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Abstract:
These are some notes on vector differential operators in curvilinear coordinates. In particular,
we derive the expressions for gradient, divergence, curl, and Laplacian in a general curvilinear
coordinate system.
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1 Introduction

Different laws of physics are constructed by using different differential operators. While most
common is the Cartesian coordinate system, depending on the symmetry of the problem, other
coordinate systems are amenable for different calculations. One particular example is the system
possessing a rotational symmetry where spherical coordinate system is clearly the best suited
for most of the calculations. The other example is any system possessing an axial symmetry
where cylindrical coordinate system is clearly preferred.
Vector differential operators enjoys its ubiquitous appearances in various branches of physics,
notably in Electrodynamics and Quantum Mechanics. They are usually presented in Cartesian
coordinates as gradient, divergence, curl, and Laplacian with the following expressions
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∂y
+ êz
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∂z
, (1)
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∂z
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∣∣∣∣∣∣
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1For questions, comments, criticism, reporting typos or appreciation please write to jewel.ghosh@iub.edu.bd.
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where the grad and the Laplacian operators act on a scalar Φ(x, y, z), the divergence and curl
operator acts on a vector2

A⃗ = Axêx + Ayêy + Az êz =
3∑

i=1

Aiêi. (5)

It will be useful to have expressions of gradient, divergence, curl, and Laplacian in other coor-
dinate systems. This is the main purpose on these notes.3

2 Curvilinear coordinates

In this section, we will introduce the curvilinear coordinates. While Cartesian coordinates uses
perpendicular lines as the axes, other coordinate lines can be useful. Particularly useful other
coordinates are: 1) Polar coordinates, 2) Spherical coordinates, 3) Cylindrical coordinates.
In all these coordinate systems, the coordinate axes are curved. They belong to curvilinear
coordinate systems.
One important difference between the Cartesian and curvilinear coordinates is that in Cartesian
coordinates the unit vectors are fixed, whereas in the curvilinear coordinates the unit vectors are
not fixed. This is illustrated in the following figures. We consider three curvilinear coordinates
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(a) For Cartesian coordinates the coordinate unit
vectors {êx, êy} are fixed irrespective to the base
point.
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(b) In polar coordinates (ρ, ϕ), the unit vectors
{êρ, êϕ} depend on the position. This is in contrast
to the Cartesian coordinates.

{q1, q2, q3}. Their dependence on the Cartesian coordinates are given by the following relations

q1 = q1(x, y, z), (6)

q2 = q2(x, y, z), (7)

q3 = q3(x, y, z). (8)

These relations can be inverted, and we can write

x = x(q1, q2, q3), (9)

y = y(q1, q2, q3), (10)

z = z(q1, q2, q3). (11)

2In our notation A1 = Ax, A2 = Ay, A3 = Az, and ê1 = êx, ê2 = êy, ê3 = êz.
3These notes are written from the author’s understanding, and not original. Significant help have been taken

from [1, 2, 3, 4, 5, 6].
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In the usual vector analysis we write the position vector

ℓ⃗ = xêx + yêy + zêz. (12)

The dependence on {qi}4 can be obtained by inserting Eqs. (9)-(11) into Eq. (12), and we have

ℓ⃗ = ℓ⃗(q1, q2, q3).

The quantity ∂ℓ⃗
∂qi

denotes a vector in the direction of increasing qi while keeping other coordi-
nates fixed. Therefore we can write

q⃗i =
∂ℓ⃗

∂qi
. (13)

Therefore the unit vector in the direction of qi is given by

q̂i =
q⃗i
|q⃗i|

. (14)

2.1 The metric

The central quantity from which the expressions of vector differential operators will be obtained
is the metric. The metric can be extracted from the line element which is the distance squared
of two infinitesimally close points. In Cartesian coordinates, the distance squared between two
pints P (x, y, z) and Q(x+ dx, y + dy, z + dz) can be obtained from Pythagoras theorem

ds2 = dx2 + dy2 + dz2 = d⃗ℓ · d⃗ℓ. (15)

In general we can write

d⃗ℓ =
3∑

i=1

∂ℓ⃗

∂qi
dqi =

3∑
i=1

q⃗idq
i. (16)

Inserting this into Eq. (15) we can write

ds2 =
3∑

i,j=1

q⃗i · q⃗jdqidqj, (17)

=
3∑

i,j=1

gijdq
idqj. (18)

The quantity gij = q⃗i · q⃗j is called the metric, and is a central quantity in differential geometry.
Although not necessary, we will assume the the coordinate vectors are orthogonal, that means

q⃗i · q⃗j =
{

non-zero if i = j,
0 if i ̸= j.

(19)

In this case, gij is a diagonal matrix

gij =

(h1)
2 0 0

0 (h2)
2 0

0 0 (h3)
2

 (20)

where h1 = |q⃗1|, h2 = |q⃗2|, h3 = |q⃗3|. Then the line element for an orthogonal curvilinear
coordinates can be written as

ds2 = (h1)
2(dq1)2 + (h2)

2(dq2)2 + (h3)
2(dq3)2. (21)

Using the information above we can also write

d⃗ℓ = h1dq
1q̂1 + h2dq

2q̂2 + h3dq
3q̂3. (22)

Eqs. (21)-(22) will be elemental in the following discussions.

4Small Latin indices can take values i, j, k = 1, 2, 3.
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3 Vector differential operators

In this section, we will construct different vector differential operators. We will start from the
gradient operator which will be required to construct the other differential operators.

3.1 Gradient

The gradient of a scalar functions measures the steepness of a function along a given direction.
More precisely, consider a function Φ(x, y, z). Its change is given by:

dΦ =
∂Φ

∂x
dx+

∂Φ

∂y
dy +

∂Φ

∂z
dz, (23)

= (∇⃗Φ) · d⃗ℓ. (24)

Since d⃗ℓ = dxêx + dyêy + dzêz, we can extract the form of the gradient operator in Cartesian
coordinates as

∇⃗ = êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
. (25)

The same reasoning can be applied to find the form of the gradient in any curvilinear coordi-
nate system. Consider a scalar function Φ(q1, q2, q3). The differential of this function can be
computed as follows:

dΦ =
∂Φ

∂q1
dq1 +

∂Φ

∂q2
dq2 +

∂Φ

∂q3
dq3, (26)

= (∇⃗Φ) · d⃗ℓ. (27)

We know from Eq. (22) that

d⃗ℓ = h1dq
1q̂1 + h2dq

2q̂2 + h3dq
3q̂3. (28)

Therefore, Eq. (27) will be satisfied when

∇⃗ =
q̂1
h1

∂

∂q1
+

q̂2
h2

∂

∂q2
+

q̂3
h3

∂

∂q3
. (29)

This expression will also be abbreviated as

∇⃗ =
3∑

i=1

q̂i
hi

∂i (30)

where

∂i =
∂

∂qi
(31)

has been defined for brevity.

3.2 Divergence

Having obtained the expression for gradient, now we will move to obtaining an expression for
divergence of a vector. Consider a vector expressed in the basis {q̂i}. That means

A⃗ = A1q̂1 + A2q̂2 + A3q̂3 =
3∑

i=1

Aiq̂i =
3∑

i=1

Ai

hi

q⃗i. (32)
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To take the divergence, we perform the following steps

∇⃗ · A⃗ =
3∑

i=1

q̂i
hi

∂i ·

(
3∑

j=1

Aj

hj

q⃗j

)
, (33)

=
3∑

i,j=1

[
hj q̂i · q̂j

hi

∂i

(
Aj

hj

)
+

Aj

hihj

q̂i · ∂iq⃗j
]
, (34)

=
3∑

i=1

∂i

(
Ai

hi

)
+

3∑
i,j,k=1

Aj

hihj

Γk
ij q̂i · q⃗k, (35)

=
3∑

i=1

∂i

(
Ai

hi

)
+

3∑
i,j,k=1

Ajhk

hihj

Γk
ij q̂i · q̂k, (36)

=
3∑

i=1

∂i

(
Ai

hi

)
+

3∑
i,j=1

Aj

hj

Γi
ij. (37)

To simplify the above, we have used the orthonormality property of the unit vectors, namely
q̂i · q̂j = δij. We have also used the fact that

∂iq⃗j =
3∑

k=1

Γk
ij q̂k. (38)

This is a simple consequence of the fact that the set {q̂i} forms a basis set at the particular
point.
To find an expression for the coefficients Γk

ij, we perform the following manipulations

∂igjk = ∂i (q⃗j · q⃗k) , (39)

= (∂iq⃗j) · q⃗k + q⃗j · (∂iq⃗k), (40)

=
3∑

m=1

Γm
ij q⃗m · q⃗k +

3∑
m=1

Γm
ikq⃗j · q⃗m, (41)

=
3∑

m=1

Γm
ijgmk +

3∑
m=1

Γm
ikgjm. (42)

Before moving further, we will need one important property of Γk
ij. This can be found from the

following manipulations. First observe that

∂iq⃗j = ∂i∂j ℓ⃗ = ∂j∂iℓ⃗ = ∂j q⃗i. (43)

This implies

∂iq⃗j = ∂j q⃗i, (44)

⇒
3∑

k=1

Γk
ij q⃗k =

3∑
k=1

Γk
jiq⃗k, (45)

⇒ Γk
ij = Γk

ji. (46)
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That means Γk
ij is symmetric in its lower indices.

From Eq. (42) we can write

∂igjm =
3∑

n=1

Γn
ijgnm +

3∑
n=1

Γn
imgjn, (47)

∂jgmi =
3∑

n=1

Γn
jmgni +

3∑
n=1

Γn
jigmn, (48)

∂mgij =
3∑

n=1

Γn
mignj +

3∑
n=1

Γn
mjgin. (49)

Now performing (47)+(48)-(49), and using the symmetry of Γn
ij and gij we find

3∑
n=1

Γn
ijgnm =

1

2
(∂igjm + ∂jgmi − ∂mgij) . (50)

Multiplying by the inverse metric element gmk, summing over m, and using
∑3

m=1 gnmg
mk = δkn

we find

Γk
ij =

3∑
m=1

1

2
gmk (∂igmj + ∂jgim − ∂mgij) . (51)

Readers familiar with General Relativity will immediately recall that this is the expression for
Christoffel’s symbols.
We need an expression for

∑3
i=1 Γ

i
ij which is

3∑
i=1

Γi
ij =

3∑
i,k=1

1

2
gik (∂igkj + ∂jgik − ∂kgij) , (52)

=
3∑

i,k=1

1

2
gik∂jgik, (53)

where we have used the fact reshuffling indices cancels the first and third term, and the middle
term survives. To evaluate this, we recall from Linear Algebra that for a non-singular matrix
M , we have the following identity

ln [det(M)] = tr (lnM) . (54)

Using this one should be able to prove the important relation
∂j [det(M)]

det(M)
= tr (M−1∂jM). Apply-

ing this for metric gij, we should get
∂jg

g
=
∑3

i,k=1 g
ik∂jgik, and consequently

∑3
i=1 Γ

i
ij =

∂j
√
g

√
g
,

where g = det(gij).
Let us use this in Eq. (37) to get

∇⃗ · A⃗ =
3∑

i=1

∂i

(
Ai

hi

)
+

3∑
i,j=1

Aj

hj

Γi
ij, (55)

=
3∑

i=1

∂i

(
Ai

hi

)
+

3∑
j=1

Aj

hj

∂j
√
g

√
g

, (56)

=
3∑

i=1

[
∂i

(
Ai

hi

)
+

Ai

hi

∂i
√
g

√
g

]
, (57)

=
1
√
g

3∑
i=1

∂i

(√
gAi

hi

)
. (58)
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This formula is general for divergence of a vector. For metric (20) we have
√
g = h1h2h3, and

the above formula simplifies

∇⃗ · A⃗ =
1

h1h2h3

[
∂

∂q1
(
A1h2h3

)
+

∂

∂q2
(
A2h3h1

)
+

∂

∂q3
(
A3h1h2

)]
. (59)

3.3 Curl

In this section we will obtain a general formula for curl in curvilinear coordinates. To facilitate
the calculation, we observe the following

∇⃗qi =
3∑

j=1

q̂j
hj

∂jq
i =

q̂i
hi

. (60)

Then any vector can be written as

A⃗ =
3∑

i=1

Aiq̂i =
3∑

i=1

Aihi∇⃗qi. (61)

Now we apply curl to both sides to get5

∇⃗ × A⃗ =
3∑

i=1

[
Aihi∇⃗ × ∇⃗qi − ∇⃗qi × ∇⃗(Aihi)

]
. (62)

Since ∇⃗ × ∇⃗V⃗ = 0 for any vector, in the above equation only the second term survives. Then
we perform the following calculations

∇⃗ × A⃗ = −
3∑

i=1

∇⃗qi × ∇⃗(Aihi), (63)

= −
3∑

i,j=1

1

hihj

∂j(A
ihi)q̂i × q̂j, (64)

= −
∑

i,j,k=1,3

∂j(A
ihi)

hihj

ϵijkq̂k. (65)

where ϵijk is the totally antisymmetric symbol with the following definition

ϵijk =

{
1 when (i, j, k) = (1, 2, 3) or any even permutation,

−1 when (i, j, k) is an odd permutation of (1, 2, 3).
(66)

With a reshuffling of indices, we can write

∇⃗ × A⃗ =
3∑

i,j,k=1

∂i(A
ihj)

hihj

ϵijkq̂k =
3∑

i,j,k=1

∂i(A
ihj)

hihjhk

ϵijkq⃗k. (67)

This can also be written as

∇⃗ × A⃗ =
1

h1h2h3

∣∣∣∣∣∣
h1q̂1 h2q̂2 h3q̂3

∂
∂q1

∂
∂q2

∂
∂q3

A1h1 A2h2 A3h3

∣∣∣∣∣∣ . (68)

5We use the following vector identity ∇⃗ × (fV⃗ ) = f∇⃗ × V⃗ − V⃗ × ∇⃗f for a scalar f and a vector V⃗ .
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3.4 Laplacian

After having the expressions of gradient and divergence, it is easy to find an expression for
Laplacian valid for a general curvilinear coordinate system. Recall that the Laplacian is defined
by

∇2Φ = ∇⃗ · ∇⃗Φ. (69)

Using the expression of Eq. (29), we can write

∇⃗Φ =
q̂1
h1

∂Φ

∂q1
+

q̂2
h2

∂Φ

∂q2
+

q̂3
h3

∂Φ

∂q3
. (70)

Then using the expression (59) we find the expression of Laplacian

∇2Φ =
1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂Φ

∂q1

)
+

∂

∂q2

(
h3h1

h2

∂Φ

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂Φ

∂q3

)]
. (71)

4 Summary

In these notes we have obtained the expressions of vector operators, namely gradient, diver-
gence, curl, and Laplacian in any curvilinear coordinate system. For a quick reference, we
summarize here all the necessary formulae.

The differential distance vector:

d⃗ℓ = h1dq
1q̂1 + h2dq

2q̂2 + h3dq
3q̂3. (72)

The metric:
ds2 = (h1)

2(dq1)2 + (h2)
2(dq2)2 + (h3)

2(dq3)2. (73)

Representation of a vector:

A⃗ = A1q̂1 + A2q̂2 + A3q̂3. (74)

The gradient operator:

∇⃗ =
q̂1
h1

∂

∂q1
+

q̂2
h2

∂

∂q2
+

q̂3
h3

∂

∂q3
. (75)

The divergence of a vector:

∇⃗ · A⃗ =
1

h1h2h3

[
∂

∂q1
(
A1h2h3

)
+

∂

∂q2
(
A2h3h1

)
+

∂

∂q3
(
A3h1h2

)]
. (76)

The curl of a vector

∇⃗ × A⃗ =
1

h1h2h3

∣∣∣∣∣∣
h1q̂1 h2q̂2 h3q̂3

∂
∂q1

∂
∂q2

∂
∂q3

A1h1 A2h2 A3h3

∣∣∣∣∣∣ . (77)

8



The Laplacian of a scalar:

∇2Φ =
1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂Φ

∂q1

)
+

∂

∂q2

(
h3h1

h2

∂Φ

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂Φ

∂q3

)]
.

(78)
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