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Real-life Applications

* Markov Random Field

- Atoy example to explain MRF
- Conditional Independence

- Factorization: Pairwise

- Clique Factorization

Inference in MRF
- Belief Propagation : Sum-Product Algorithm

- Loopy BP
- Linearized BP
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Image Segmentation Formulation

+ Partition the image pixels into regions
corresponding to distinct parts of scene

* binary class segmentation: foreground or
background

- pixel treated as a random variable X;
that has a domain {0,1}
- 0=foreground and 1 = background + Two facts:
1. label of pixel depends on the statistics
over color, texture,etc.
2. two neighboring pixel are likely to have

same label.

+ A node for each pixel (we can versegment image

into superpixels amd classify each superpixels.)

+ Edge between neighboring pixels

The join probability distribution, P(X1, .., X,) can be formulated through a undirected
graph where node and edge constraints take care of two facts respectively.
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Node Classification

+ Graph of nodes X1, ..X, related by set of edges E X1
+ Assign each node X; a label from V = vy, .., v X3 0
+ Each node, taken in isolation, has its preference e X2

among possible labels which be called unary
potential or node potentials,

+ Also need to impose a soft smoothness
constraint (aka edge potentials) that neighboring
nodes should take similar values

Similar to image segmentation problem, we can formulate the join probability
distribution, P(X1, .., X, ) through a undirected graph
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PGM: Bayesian Network & Markov Random Field

+ In general, this model is called a + Undirected Graphical Model aka MRF
Probabilistic Graphical Model (PGM) that X4
defines a parameterized probability Xs
distribution and holds a set of X2

conditional independence assumptions

+ Directed Graphical Model aka BN s %

- Agraph over random variables X1, .., X,
and cycles are permitted

- Potential Function W, also called
"factors”, are used to define the joint
probability P(X1, .., X»)

- P(X1, X2, X3, X4, X5) = P(X1) - P(X2|X1) -
P(X3|X1) - P(Xa|X2) - P(Xa|X3) - P(X5|X3)
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A Toy Example of Undirected Graphical Model

1. Four students study in pairs to work on homework

Alice and Bob are friends A Social Network with
Bob and Charles study together (ALCQ{B.D}) and (BLD|A,C)
Charles and Debbie argue with each other Alice

Debbie and Alice study together
Alice and Charles can’ t stand each other
Bob and Debbie had relationship ended badly Debbie

2. Professor may have mis-spoken
e.g., on a machine learning topic

Charles

3. Students may have figured out the problem
e.g., by thinking about issue
or by studying textbook

4. Students transmit this understanding to his/her
study partner
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Modeling the Example: Misconception Problem

Probability of misconception of one person depends on whether their study
partner has a misconception
1. Conditional Independence I: Alice and Charles can’t stand each other
It implies that (A L C|B, D)
2. Conditional Independence II: Bob and Debbie had relationship ended badly
Also, means that (B L D|A, C)

We need to model

(AL cB,D),(BLDIAC) Alice
. Debbie (DY ng} Bob
Note that: There does not exist a BN that = -
can capture these two assumptions (©
Charles
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Modeling the Misconception Problem

Four binary random variables representing
whether or not student has misconception

Xe{AB.C,D}

x': student has the misconception

x" : Student does not have a misconcpetion

Probabilities assuming four variables are independent

a o B B!

To get contextual
i - ete interactions between variables
a’= has misconception we need a MN

a'= no misconception
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Capturing Affinities between Variables

+ Let D be a set of random variables

+ A factor ¢ is a function from Vai(D) to R
—where Valis the set of values that D can take

+ A factor is non-negative if all its entries are non-
negative

* The set of variables D is called the scope of the
factor, denoted Scope[®]

+ In our example, ¢,(A,B): Val(A,B) > R*
— Higher the value, more compatible they are -
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Example of a Factor

. . Alice
» Factor is not normalized to sum to D) Alice& Bob
one &fﬂends
. Debbie ‘\/D ) ( H:i Bob
« Values need not be in [0,1] \/
» ¢,(A,B) asserts that Aand B o
—are more likely to agree than o1 [A. ]
disagree 0 0
a ] 30
— More weight to when they agree a® b 5
than when they disagree A
* Translates to higher probability for ,;,= has misconception

disagreeing values a''= no misconception
b" = has misconception
b! = no misconcdgtion

AGenCy Lab

Independent University Bangladesh
Markov Random Fields and Its Inference: Belief Propagation & Loopy Belief Propagation




Factors of the Misconception Example

ba D, A] Alice 1A 2]
d’ & 100 2 B0 30
) 1 « ) s
' a Ll Alice & Debbie Alice & Bob  |4" B 5
d o 1 Study together are friends al b° 1
d'_a' 100 LB 10

Debbie Bob

. Debbie & Charles Bob & Charles .

- ) da[B. C
4alC. I I\\ Ague/Disagree Study together 2| ]
@ J° 1 5 < 100
< d' 100 P ! 1
et d? 100 Charles b L 1
ct d 1 B &' 100
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Pairwise Compatibility Factors

o= has misconception
a'= no misconception

bal D, A] Alice o1 [A, D] 1= has misconception
y i b' = no misconception
o' 30
F 5
o 1 ' .
o in Alice and Debbie
are compitable
Debbie Charles and Debbie

are incompatible
Most likely instantiations are
when they disagree

.. d" Illlll Charled 1 .0 "
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Definition of the Factor Product

Let X, ¥ and Z be three disjoint sets of variables
#,(X,Y) and ¢,(Y,Z) are two factors

Factor product ¢, X ¢, is a factor ¥(4,B,C)

a' [ bt fosn5=025
; a' | 4| |os07=035
Y: Val(X,Y,Z) 2R $(AB oo [emne
as follows: b os 2 o[ [oxnazote
a | B |08 b et os a | b et |0.1.05=008
l,l'J (.X. YZ)=¢](X.Y)¢2(Y,Z) @b 01 bt )07 = a | b & ornT=007

a | b0 b o a | B!

@ let]e b |02 EHEE

HEE @b

&b

R

R

Two factors are multiplied in a way that matches-up
the common part ¥

In the example, factors do not correspond to
either probabilities or conditional probabilities
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Combining Local Models into Global

* We combine local interactions

(models) by multiplying them a‘{zl‘“;ﬁg’l:ﬁe”;” Unnon ’;}féiégg
&1(A,B) - 2(B, C) - d3(C,D) - b4 (D, A) a® [ 7| &0 |t 300,000
Alice, Bob and Debbie have misconception ::: g:: :i fl’ 3“0'022
but Charles does not a® bt | e | g0 500
d1(a' b ) -pa (b, %) p3(”,d")-pa(d",a") = a0 ot | 0| 500
10-1-100 - 100 = 100000 a | ot et d 5,000, 000
a® | bt |l |t 500

+ Covert to a legal distribution by al | B0 |0 |d° 100
. N al | 0] 0| 1,000, 000
performing a normalization. R O B 100
al | B2 [ |t 100

al |61 |0 | do 10

a' |0t |0 |d 100, 000

al | bt et | d® 100, 000

al | bt |t | at 100, 000
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Normalized Joint Distribution

P(a7 b7 (o d) = %9251 (0, b)¢2(b7 C)'¢3(C7 d)¢4(d7

where,
Z= " 61(a,b)-¢2(b,¢)-d3(c,d)-¢a(d, )
a,b,c,d

Z is a normalizing constant called the
Partition Function
The value of Z here is 7201840
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Assignment

Unnermalized

Normalized

A E [ d 300,000 0.04
a® | B0 | 0 | dt 300,000 0.04
a® | 90| et | dO 300,000 0.04
a® | B0 | et | dt 30 4.1-107
a® | b || dO 500 6.9-107°
a’ | bt | dt 500 6.9-10°
a | bt | et | d° 5,000,000 0.69
a® | b | et | dt 500 6.9-107°
al |0 | 0 | do 100 1.4-1075
al | 0| 0| dt 1,000,000 0.14
at | 80| et | d? 100 1.4-107°
al |89 | et | dt 100 1.4-107°
al | b | | do 10 1.4-1076
a | bt | dt 100. 000 0.014
a | b'| et | d? 100. 000 0.014
al | b | et | d! 100,000 0.014
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Answering Queries

+ We can obtain any desired probability
from the joint distribution as usual,
P(b) = 0.268: sob is 26%likely to have a
misconception
P(b1|CO) = 0.06: if charles does not have the
misconception, Bob is only 6% likely to have

misconception.

+ Most probable joint probability:
P(GO, bl, Cl7 do) = 0.69 : alice, Debby have

no misconception, Bob, Charles have misconception
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Assignment

Unnermalized

Normalized

AT [ d 300,000 0.04
a | 0| & | dt 300,000 0.04
a® | B0 | et | do 300,000 0.04
a® | B0 | et | dt 30 4.1.10°6
a® | b | 0 | do 500 6.9.107°
a® | bt | 0| dt 500 6.9-107°
a® | bt | et | d? 5,000,000 0.69
a® | b | et | dt 500 6.9-107°
al |09 | 0| do 100 1.4-107°
at |0 | dt 1,000,000 0.14
at | 0| et | d° 100 1.4-107°
al |09 | et | dt 100 1.4-107°
al | b || d° 10 1.4-10-¢
al |0t ||t 100, 000 0.014
at | bt | et | d? 100, 000 0.014
al | b | et | d! 100, 000 0.014
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Factors # Marginal Probabilities

Joint Distribution Marginal distribution Factor
Assignment | Unnormalized over Alice,Bob over Alice,Bob
a’ [ b7 | e d’ 300000
a’ | b7 | e d 00000
a® | 6% | ! a° 300000
oo @ o @ B 013 o1[A. B
a | b d” 500 0 §
a® [t || 500 a b 0.69 a” B 30
wlwlalal  *m| coes| o B 014 al 58
a' |80 || d® 100 L4-10-% f 5 a' b 1
a' | 80| | 1000000 0.14 a b 0.04 a' b 10
a' |0 [ A 100 L4-10%
a' [0 | [ 100 L. 107" . .
al B || 0| a8 Most likely: a”.b'(disagree) a’,b"(agree)
a' | b |« * 100000 0.014
at [t ] | a® 100000 0.014 . .
a' | bt | e | 100000 0.014 Because probability takes into account
influence of other factors
- : i Debbie-Alice (1)
@a[B. C] &a[C, D] agree /—\?
0 0 0 0 #a[D, 4] (o} 8)
b « 100 ¢ d 1 24 Py
B ! 1 & & 100 4« 100 ™" B Gt
1 0 1 0 4 a’ 1 Charles-Debbie  [gf ~ Dob-Charles
b ¢ 1 ¢ o 100 ¢ : (&) agree
B 1 100 1 1 d'  a 1 disagree
S G d ! d' a' 100, ®»
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Preserving Independence in Misconception Problem

+ Tight connection between factorization and independencies

— P supports (X1 Y|2) iff we can write distribution
as P(X)=¢,(X,2)$,(Y,2)
* In our example, we can write
PULBC.D)=| L0.AB) 6,(B.)-[6.€.D) 6,(D.4)

Factor with {B,{A,C}} Factorwith {D,{A,C}}
* Therefore (BLD |A,C)
* By grouping factors with {A,{B,D}}and {C.{B.D}}
* We get (4LC |B,D)
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Are Pairwise Potentials are sufficient?

* One idea: associate a factor with each edge
but it is insufficient to specify arbitrary joint distribution.
- Consider a fully connected graph
+ There are no independence assumptions
- If all variables are binary
+ Each factor over an edge has 4 parameters
+ Total number of parametersis 4 X "Cy

- An arbitrary distribution needs 2" — 1 parameters
+ Pairwise factors have insufficient parameters

« For more general representation, factors should be defined over arbitrary subsets
of variables.
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Conditional Independence in MRF

+ Conditional Independence is determined by
simple graph separation
- Consider three sets of nodes A, B, and C

- Cond. Independence property: A L B|C
- This propery holds only if all possible paths that
connects nodes in A to nodes in B are "blocked":

all such paths pass through one or more nodes in C

+ If there at least one unblocked path between A

and B:
- there exists at least some distributions

corresponding to the graph that do not satisfy
A L B|C property.
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Factorization Properties

+ Factorization rule corresponds to the conditional independence test
+ The joint distribution p(x) expressed as a product of functions defined over sets of variables
that are local to the graph

+ Consider two nodes x; and x; not connect by a link

- They are conditionally independent given all other nodes in
graph
+ Because there is no direct path between them
« all other paths pass through nodes that are observed and hence

those paths are "blocked” X

- Expressed as: p(x;, XX\ (1,3 = p(xilX\ gy - pOGIX0 iy

* Where X\{,J}: set of X of all variables with x; and x; removed
+ For the conditional independence to hold
- factorization is such that x; and x; do not appear in the same factor.
+ No path between them other than going through others

X

- leads to graph concept of clique
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Factors as Cliques

+ Set of variables in clique C is denoted X¢

+ Joint distribution as a product of clique potential
functions,

p() = 1 [T wetx)
C

+ Where Z, the partition function, is a normalization

constant
zZ= Z H Ue (Xc)
X C

+ Clique potential can be derived by multiplying all factors assigned to each clique
- we can write W;(xz2, x3, Xa) = ¥j(x2,x3) - Ye(x2,Xa) - Pr(x3,X1)
- Limits the expressibility of model to some extent.
+ because we can not define the clique potential function by an arbitrary function that is limited by
pairwise potentials.
+ In practice, pairwise potentials are more popular.
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Relationship btw Factorization & Con. Independence

+ UI: set of such distributions that are consistent with the set of conditional independence
corresponding to the graph

+ UF: set of such distributions that are expressed as factorization w.r.t the maximal cliques.

* Hammersley-Clifford theorem states that Ul and UF are identical:
- if potential functions are restricted to be strictly positive

+ In practice, ¥c(xc) = exp{ — E(xc)} is commonly used

- E(xc) is an energy functiom
- the joint distribution is called Gibbs Distribution
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MREF into Image Segmentation

+ A node for each pixel or superpixel, X;

si ®
. . Sie—Th—
. Edge between nodes if regions are = E‘/;ij\.;.‘;‘
adjacent = BB RS @
. e L e "ﬂ"l‘*’%ﬂ
+ Joint probability distribution over an '—r% i k\ =
image defined using Log-linear model ‘ (I ([
- ATdSs “‘
s i LS L @
1
P(X1, ., Xp; 0) = exp{ - E-(D',Qﬂ)}
’ 2(6) ; S where, W(Dy) = exp(—E(D;, 67))
k + Ejis the energy function
Z(9> = Zexp{ - ZE,‘(&,Q,’)} + D;is the domain of X;
3 i=1 + kis the number of factors
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MRF into Node classification

+ For each node, node potentials defined as &(X;)
+ To impose a soft smoothness constraint, edge
potentials defined as &;(X;, X;)

+ From the perspective of physics, Higher energy
states have lower probability

The Goal of node classification is to minize the energy function:

argxrlr}lnExl,.. Zéf Xi —&—ZE,, Xiy X;)
{i}
* Returns the setting of random variables/nodes that have the highest joint
probability
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Inference

Inference tasks of PGMis to :
1. Find marginals of random variables [Sum-Product Algorithm]

2. Find the setting of the variables that has the highest joint probability and the value
of that probability [Max-Sum Algorithm]
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Sum-Product Algorithm: Exact Inference

+ Also known as Belief Propagation

+ Basically, a message passing algorithm on a factor graph
- A efficient, exact inference algorithm for finding marginals

b0 = 3 p(x)
X\x

where X \ x denotes the set of variables in X with variable x omitted

- Several marginal computation can be shared efficiently

+ Factor graph must have a tree structure.
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Conversion of Undirected Graph to Factor Graph

B w3

» Steps in converting Single di
distribution expressed p(ljr:gnetigllque
as undirected graph: )y L)

1. Create variable nodes a a5
corresponding to ‘
nodes in original

2. Create factor nodes
for maximal cliques x,

With factors
Sy XpX )= WK X5 ,)

3. Factors f(x ) set equal T
to clique potentials
+ Several different
factor graphs possible ,
from same Ie
distribution Wil Taclors

Jalx 12530y 0000 = W x005)
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Multiple Factor Graphs for same Graph

 Factor graphs are specific about
factorization /’
» A fully connected undirected graph

+ Joint distribution in two forms
— In general form
PX)=Ax;.x5,x35)
— As a specific factorization
PO)=E, ey )fy (X x5 )F, (35 ,x3)

(@1 2, 25)
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Message Passing Intution

Count the soldiers

there's
10f me
2
before before before
you you you
A; o
5 |4
behind behind behlnd behlnd behind
you you you you you
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Message Passing Intution

Count the soldiers

_ r,.,('r"‘:/- b .‘\',.,
there's [ Belief: )
1ofme [ Mustbe A

2
before

I\- 2 +I+ 3=60f J

’ only sek
my incoming
messages
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Message Passing Intution

Each soldier receives reports from all branches of tree

[ ‘

(
Ve & / (

.1ofme

\

\‘.

‘.
. _—
A
O
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Message Passing Intution

Each soldier receives reports from: all branches of tree
»

<. -
. Y, ¢ /"
- \.

[
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Message Passing Intution

Each soldier receives reports from: all branches of tree
.

-
/
€
/(
L ]
SERY
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Message Passing Intution

Each soldier receives reports from all branches of tree

< \
elief: 2
~ Mustbe
14 of us g
h . ,/J o
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Message Passing Intution

Each soldier receives reports froms all branches of tree

AGenCy Lab

Independent University Bangladesh

Markov Random Fields and Its Inference: Belief Propagation & Loopy Belief Propagation



Belief Propagation

* The joint distribution can be written as a product
of the form

p) = J[ Flox) (1)

s€ne(x)

Fo(x, Xs)

+ ne(x) - set of neighbor factor nodes of x
* X - set of all variables in the subtree connected
to the variable node x via the factor node f; A fragment of a factor graph

* F5(x,Xs) - product of all the factors in the group ~ llustrating the evaluation of the
associated with factor f; marginal p(x)
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Belief Propagation
+ we get the marginal p(x) -

p) = I T] AGox)]

X\x s€ne(x)

pe) =TT D_RMxX)]

s€ne(x) Xs

)

Fy(xz, X,)

+ We introduce a set of functions denoting the
messages from factor node f; to variable node x
denoted by,

A fragment of a factor graph
M=) = Z Folx, %) @ iIIustra%ing the evaluatioﬁ ofpthe
- marginal p(x)

* Required marginal p(x) can be written as the product
of all the incoming messages arriving at node x
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Belief Propagation

+ To evaluate the messages f1, —sx(x), each factor F;(x, X;) can be M
factorized using the factor graph of Figure 1.

\p"wl\f"fs (IM)

Fs(x, Xs) = fs(X, X1, ooy Xin) G (X1, Xs1 ). Gua (X, Xowr) — (4)

+ Substituting Fs(x, Xs) in Equation 3 with Equation 4 we obtain

‘U.f;_;x:Z...ng(x,xl,...7)(m) H [ZGm(xm,Xgm)]

mene(f;)\x Xom

Tm
(5)
St I[ wale) @ Ol o)
a w mene(fs) \x

messages from variable nodes x,, to factor node f;, i, —, are Figure 1: lllustration of the
defined as factorization of the subgraph

Ho =57, (OXm) = XX: G (X, Xom ) Y associated with factor node f;
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Belief Propagation

* Gp(Xm, Xsm) associated with the node x» defined as 1
the product of terms F(Xm, Xon)

G (xm Xsm) =[] AGms Xomt) ®)
IEne(im) Vs

+ Hence, Messages from variable node x to factor node

s
s f
X) = Gm (Xm, X.
IU/XmeS( ) Xz: m( m sm) Fl(x"“X’!nl)

= H [E Fi(xm, X )] Figure 2: lllustration of the evaluation
1€ne(n) Ve Yo of the message sent by a variable

= H = xm (Xm) node to an adjacent factor node
1€ne(xm) \fs
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Belief Propagation

+ Two kinds of messages are defined over the discussion

- Messages from factor node f; to variable node x, ufsﬁx(x)

Lr—x(X) = Z Zfs(x,xl, vy Xu) H st (Xm) 9)

X1 méene(fs) \x

To evaluate the message sent by a factor node to a variable node along the link connecting them, take the product
of the incoming messages along all other links coming into the factor node, multiply by the factor associated with
that node, and then marginalize over all of the variables associated with the incoming messages

- Messages from variable node x to variable node fs, fix—, (X)

por() = [ e (10)
I€ne(xm) \fs
To evaluate the message sent by a variable node to an adjacent factor node along the link connecting them, take the

product of the incoming messages along all of the other links coming into the variable node.
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Message Passed from Leaf Nodes

The sum-product algorithm Poop(z) =1 Proz(z) = f(2)

begins with messages sent — S

by the leaf nodes, which de- O—. .—O
pend on whether the leaf T f f

node is (a) a variable node,

or (b) a factor node. @) (b)

Figure 3: Messaging Passing From Leaf Nodes in Sum-Product Algorithm
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Belief Propagation

Input: a factor graph with no cycles
Output: exact marginals for each variable and factor

Algorithm:

1. Initialize the messages to the uniform distribution.
[pisa(x:) = 1| prasi(zs) =1

1. Choose a root node.

2. Send messages from the leaves to the root.
Send messages from the root to the leaves.

tima(@) =TI tasi@) | | pasil@z) = DY val@a) ] wica(@ali)

aEN(i)\a T @ [1] =4 JEN (a)\i
1.  Compute the beliefs (unnormalized marginals).
biw) = [ tasi(@) |[bal(@a) = va(@a) [] tival@ali)
aEN (i) PiEN (o)
2. Normalize beliefs and return the exact marginals.

‘P;(-Ti) o< by () ‘pa(ma) x ba(za)‘
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Belief Propagation Simulation

AGenCy Lab

Independent University Bangladesh

Markov Random Fields and Its Inference: Belief Propagation & Loopy Belief Propagation



Belief Propagation Simulation: Step 1
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Belief Propagation Simulation: Step 2

F P (1) =
D gy (X2) = fB(X12)
 ixg g (X4)
 fhxs —e (X5)

N
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Belief Propagation Simulation: Step 3

: /'LXIH/'C(XI) = Hfp—xq (X1)

5
6: foz**f((XQ) = Hfg—xg (X2)
7

D Mg (X3) = ZfD(XISsX4)/tf4—>fD (xa)

~x3

8 Mpsng (X8) = D fo(xa, X5) g —p (%5)

~x3
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Belief Propagation Simulation: Step 4

95 e (x3) = > fel(x1, X2, X8) ey —1c (1 )y 1, (x2)

~X3

AGenCy Lab

Independent University Bangladesh

Markov Random Fields and Its Inference: Belief Propagation & Loopy Belief Propagation



Belief Propagation Simulation: Step 5

102 pxg—p (X3) = Hfp—x3 (X3)Mf5%><3 (X3)
11: Hxz—fp (X3) = Hfc—x3 (X3):U/f£*>)<3 (X3)
120 fixy -4 (X3) = ffe—sxs (X3) fpp—x5 (x3)
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Belief Propagation Simulation: Step 6

131 ppemng (1) = ch(h,X‘z-,Xs)ltx;,—»fc(X2)/LX3—>fC(X:3)

~x1

141 prpesny (x2) = fo(xl;X27XB)ltxlﬁf((Xl)/4X3~>fc(x3)

~xg

150 pgy—sny (xa) = ZfD(XSyM)ngHfD(XS)

~xy

16 ¢ ppp—ng (xs5) = fo(xi%7XS)HX:5~>ff(Xi3)

~xg
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Belief Propagation Simulation: Step 7

17: Mxlaf,;(xl) = Mfc—x1 (Xl)
181 fixy gy (X2) = Hfe—x2 (Xz)
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Belief Propagation Simulation: Termination
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Max Sum Algorithm

Goals:

1. Find the maximum of the joint distribution by propagating messages from the
leaves to an arbitrarily chosen root node

2. Finding the configuration of the variables for which the joint distribution attains
this maximum value

We designate a particular variable node as the ‘root’ of the graph. Then we start a
set of messages propagating inwards from the leaves of the tree towards the root,
with each node sending its message towards the root once it has received all
incoming messages from its other neighbours. The final maximization is performed
over the product of all messages arriving at the root node, and gives the maximum
value for p(x). This is be called the max-product algorithm and is identical to the
sum-product algorithm except that summations are replaced by maximizations.
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Max Sum Algorithm

Hp—x = Max | Inf(x,x1, ..., xm) + E oy —f(Xm) (11
X1 oo Xm
méne(f) \x

fxosr(x) = Z Hri—x(X)
Iene(x)\f
(12)

Prsf(x) =0 (13)
H—x(x) = Inf(x) (14)
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Max Sum Algorithm

AGenCy Lab

Finding the configuration of the variables with maximum joint probability

If a message is sent from a factor node fto a variable node x, a maximization is
performed over all other variable nodes x; , -,xy that are neighbours of that factor
node, using Equation 11.

When we perform this maximization, we keep a record of which values of the
variables x7 , -,Xy gave rise to the maximum.

Then, in the back-tracking step, having found X, we can then use these stored

values to assign consistent maximizing states x7'%, -, xj;™* .

The max-sum algorithm, with back-tracking, gives an exact maximizing
configuration for the variables provided the factor graph is a tree.
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Loopy Belief Propagation

* The general idea is to run BP on a graph containing loops

+ The fact that the presence of loops does not guarantee convergence

Algorithm 22.1: Loopy belief propagation for a pairwise MRF

1 Input: node potentials v,(z.), edge potentials v, (., z¢);
2 Initialize messages m,_;;(r:) = 1 for all edges s —;
3 Initialize beliefs bel,(z,) = 1 for all nodes s;
4 repeat
5 Send message on each edge
Mese(Te) =3, (t_'l'.g(xa,-)a_'l‘,.-x(mu,-_-J:a)]_[L,E,,,,,,\f My >»,-(Jf.s)); BP
6 Update belief of each node bel,(x,) oc ¥s(x5) ]‘[tenbr‘ Miys(25);

-

until beliefs don't change significantly;
Return marginal beliefs bel,(z,);

+ When the solution converges, it is usually a good approximation.
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Linearized Belief Propagation

+ Gatterbauer et al. [1] has derived a matrix formulation of BP like as following,
B =E+ABH
where, B - beliefs, E - prior belief or unary potential or prior belief, A - adjacent
matrix, and H - pairwise compatibility or pairwise factor matrix
« ititeratively compute the beliefs (like gradients)
+ it ensures the exact convergence guarantees (even on graphs with loops)

+ it showed promising performances in node classification

[1] Linearized and Single-Pass Belief Propagation, https://arxiv.org/abs/1406.7288
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