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Outline

• Real-life Applications

• Markov Random Field
– A toy example to explain MRF
– Conditional Independence
– Factorization: Pairwise
– Clique Factorization

• Inference in MRF
– Belief Propagation : Sum-Product Algorithm
– Loopy BP
– Linearized BP
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Image Segmentation Formulation

• Partition the image pixels into regions
corresponding to distinct parts of scene

• binary class segmentation: foreground or
background

– pixel treated as a random variable Xi
that has a domain {0,1}

– 0 = foreground and 1 = background

• A node for each pixel (we can versegment image

into superpixels amd classify each superpixels.)

• Edge between neighboring pixels

• Two facts:

1. label of pixel depends on the statistics
over color, texture,etc.

2. two neighboring pixel are likely to have
same label.

The join probability distribution, P(X1, .., Xn) can be formulated through a undirected
graph where node and edge constraints take care of two facts respectively.
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Node Classification

• Graph of nodes X1, ..Xn related by set of edges E

• Assign each node X1 a label from V = v1, .., vk
• Each node, taken in isolation, has its preference
among possible labels which be called unary
potential or node potentials,

• Also need to impose a soft smoothness
constraint (aka edge potentials) that neighboring
nodes should take similar values
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Similar to image segmentation problem, we can formulate the join probability
distribution, P(X1, .., Xn) through a undirected graph
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PGM: Bayesian Network &Markov Random Field

• In general, this model is called a
Probabilistic Graphical Model (PGM) that
defines a parameterized probability
distribution and holds a set of
conditional independence assumptions

• Directed Graphical Model aka BN
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– P(X1, X2, X3, X4, X5) = P(X1) · P(X2|X1) ·
P(X3|X1) · P(X4|X2) · P(X4|X3) · P(X5|X3)

• Undirected Graphical Model akaMRF
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– A graph over random variables X1, .., Xn
and cycles are permitted

– Potential FunctionΨ, also called
”factors”, are used to define the joint
probability P(X1, .., Xn)
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A Toy Example of Undirected Graphical Model
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Modeling the Example: Misconception Problem

Probability of misconception of one person depends on whether their study
partner has a misconception

1. Conditional Independence I: Alice and Charles can’t stand each other
It implies that (A ⊥ C|B, D)

2. Conditional Independence II: Bob and Debbie had relationship ended badly
Also, means that (B ⊥ D|A, C)

We need to model
(A ⊥ C|B, D), (B ⊥ D|A, C)

Note that: There does not exist a BN that
can capture these two assumptions
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Modeling the Misconception Problem
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Capturing Affinities between Variables
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Example of a Factor
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Factors of the Misconception Example
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Pairwise Compatibility Factors
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Definition of the Factor Product
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Combining Local Models into Global

• We combine local interactions
(models) by multiplying them
ϕ1(A, B) ·ϕ2(B, C) ·ϕ3(C, D) ·ϕ4(D, A)
Alice, Bob and Debbie havemisconception
but Charles does not
ϕ1(a

1, b1)·ϕ2(b
1, c0)·ϕ3(c

0, d1)·ϕ4(d
1, a1) =

10 · 1 · 100 · 100 = 100000

• Covert to a legal distribution by
performing a normalization.
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Normalized Joint Distribution

P(a, b, c, d) =
1

Z
ϕ1(a, b)·ϕ2(b, c)·ϕ3(c, d)·ϕ4(d, a)

where,

Z =
∑
a,b,c,d

ϕ1(a, b)·ϕ2(b, c)·ϕ3(c, d)·ϕ4(d, a)

Z is a normalizing constant called the
Partition Function
The value of Z here is 7201840
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Answering Queries

• We can obtain any desired probability
from the joint distribution as usual,
P(b0) = 0.268: Bob is 26% likely to have a

misconception

P(b1|c0) = 0.06: if Charles does not have the
misconception, Bob is only 6% likely to have

misconception.

• Most probable joint probability:
P(a0, b1, c1, d0) = 0.69 : Alice, Debby have

no misconception, Bob, Charles have misconception
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Factors ̸=Marginal Probabilities
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Preserving Independence in Misconception Problem

• Tight connection between factorization and independencies
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Are Pairwise Potentials are sufficient?

• One idea: associate a factor with each edge
but it is insufficient to specify arbitrary joint distribution.
– Consider a fully connected graph

• There are no independence assumptions

– If all variables are binary
• Each factor over an edge has 4 parameters
• Total number of parameters is 4× nC2

– An arbitrary distribution needs 2n − 1 parameters

• Pairwise factors have insufficient parameters

• For more general representation, factors should be defined over arbitrary subsets
of variables.
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Conditional Independence in MRF

• Conditional Independence is determined by
simple graph separation
– Consider three sets of nodes A, B, and C
– Cond. Independence property: A ⊥ B|C
– This propery holds only if all possible paths that

connects nodes in A to nodes in B are ”blocked”:
• all such paths pass through one or more nodes in C.

• If there at least one unblocked path between A
and B:
– there exists at least some distributions

corresponding to the graph that do not satisfy
A ⊥ B|C property.
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Factorization Properties

• Factorization rule corresponds to the conditional independence test

• The joint distribution p(x) expressed as a product of functions defined over sets of variables
that are local to the graph

• Consider two nodes xi and xj not connect by a link
– They are conditionally independent given all other nodes in

graph
• Because there is no direct path between them
• all other paths pass through nodes that are observed and hence
those paths are ”blocked”

– Expressed as: p(xi, xj|X\{i,j} = p(xi|X\{i,j} · p(xj|X\{i,j}
• Where X\{i,j}: set of X of all variables with xi and xj removed

Xi

Xj

• For the conditional independence to hold
– factorization is such that xi and xj do not appear in the same factor.

• No path between them other than going through others

– leads to graph concept of clique
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Factors as Cliques

• Set of variables in clique C is denoted XC

• Joint distribution as a product of clique potential
functions,

p(X) =
1

Z

∏
C

ΨC(XC)

• Where Z , the partition function, is a normalization
constant

Z =
∑

X

∏
C

ΨC(XC)

• Clique potential can be derived by multiplying all factors assigned to each clique

– we can writeΨi(x2, x3, x4) = ψj(x2, x3) · ψk(x2, x4) · ψk(x3, x4)
– Limits the expressibility of model to some extent.

• because we can not define the clique potential function by an arbitrary function that is limited by
pairwise potentials.

• In practice, pairwise potentials are more popular.
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Relationship btw Factorization & Con. Independence

• UI: set of such distributions that are consistent with the set of conditional independence
corresponding to the graph

• UF: set of such distributions that are expressed as factorization w.r.t the maximal cliques.

• Hammersley-Clifford theorem states that UI and UF are identical:

– if potential functions are restricted to be strictly positive

• In practice,ΨC(xC) = exp

{
− E(xC)

}
is commonly used

– E(xC) is an energy functiom
– the joint distribution is called Gibbs Distribution
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MRF into Image Segmentation

• A node for each pixel or superpixel, Xi
• Edge between nodes if regions are
adjacent

• Joint probability distribution over an
image defined using Log-linear model
as,

P(X1, .., Xb; θ) =
1

Z(θ)
exp

{
−

k∑
i=1

Ei(Di, θi)

}

Z(θ) =
∑
ξ

exp

{
−

k∑
i=1

Ei(ξ, θi)

} where,Ψ(Di) = exp(−Ei(Di, θi))

• Ei is the energy function

• Di is the domain of Xi

• k is the number of factors
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MRF into Node classification

• For each node, node potentials defined as Ei(Xi)

• To impose a soft smoothness constraint, edge
potentials defined as Eij(Xi, Xj)

• From the perspective of physics, Higher energy
states have lower probability
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• The Goal of node classification is to minize the energy function:

arg min
x1,..xn

E(x1, ..xn) =
∑

i

Ei(xi) +
∑
{i,j}

Eij(xi, xj)

• Returns the setting of random variables/nodes that have the highest joint
probability
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Inference

Inference tasks of PGM is to :

1. Find marginals of random variables [Sum-Product Algorithm]

2. Find the setting of the variables that has the highest joint probability and the value
of that probability [Max-Sum Algorithm]
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SumProduct Algorithm: Exact Inference

• Also known as Belief Propagation

• Basically, a message passing algorithm on a factor graph
– A efficient, exact inference algorithm for finding marginals

p(x) =
∑
X\x

p(X)

where X \ x denotes the set of variables in X with variable x omitted

– Several marginal computation can be shared efficiently

• Factor graph must have a tree structure.
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Conversion of Undirected Graph to Factor Graph
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Multiple Factor Graphs for same Graph
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Message Passing Intution
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Message Passing Intution
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Message Passing Intution
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Message Passing Intution
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Message Passing Intution
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Message Passing Intution
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Message Passing Intution
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Belief Propagation

• The joint distribution can be written as a product
of the form

p(X) =
∏

s∈ne(x)

Fs(x, Xs) (1)

• ne(x) - set of neighbor factor nodes of x

• Xs - set of all variables in the subtree connected
to the variable node x via the factor node fs

• Fs(x, Xs) - product of all the factors in the group
associated with factor fs

A fragment of a factor graph
illustrating the evaluation of the

marginal p(x)
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Belief Propagation

• we get the marginal p(x) -

p(x) =
∑
X\x

[
∏

s∈ne(x)

Fs(x, Xs)]

p(x) =
∏

s∈ne(x)

[
∑
Xs

Fs(x, Xs)]
(2)

• We introduce a set of functions denoting the
messages from factor node fs to variable node x
denoted by,

µfs→x(x) ≡
∑
Xs

Fs(x, Xs) (3)

• Required marginal p(x) can be written as the product
of all the incoming messages arriving at node x

A fragment of a factor graph
illustrating the evaluation of the

marginal p(x)
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Belief Propagation

• To evaluate the messages µfs→x(x), each factor Fs(x, Xs) can be
factorized using the factor graph of Figure 1.

Fs(x, Xs) = fs(x, x1, ..., xM)G1(x1, Xs1)...GM(xM, XsM) (4)

• Substituting Fs(x, Xs) in Equation 3 with Equation 4 we obtain

µfs→x =
∑
x1

...
∑
xM

fs(x, x1, ..., xM)
∏

m∈ne(fs)\x

[
∑
Xsm

Gm(xm, Xsm)]

(5)

=
∑
x1

...
∑
xM

fs(x, x1, ..., xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (6)

messages from variable nodes xm to factor node fs, µxm→fs are
defined as

µxm→fs(xm) ≡
∑
Xxm

Gm(xm, Xsm) (7)

Figure 1: Illustration of the
factorization of the subgraph
associated with factor node fs
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Belief Propagation

• Gm(xm, Xsm) associated with the node xm defined as
the product of terms Fl(xm, Xml)

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8)

• Hence, Messages from variable node x to factor node
fs,

µxm→fs(x) ≡
∑
Xxm

Gm(xm, Xsm)

=
∏

l∈ne(xm)\fs

[
∑
Xxm

Fl(xm, Xml)]

=
∏

l∈ne(xm)\fs

µfl→xm(xm)

Figure 2: Illustration of the evaluation
of the message sent by a variable
node to an adjacent factor node
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Belief Propagation

• Two kinds of messages are defined over the discussion

– Messages from factor node fs to variable node x, µfs→x(x)

µfs→x(x) ≡
∑
x1

...
∑
xM

fs(x, x1, ..., xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (9)

To evaluate the message sent by a factor node to a variable node along the link connecting them, take the product

of the incoming messages along all other links coming into the factor node, multiply by the factor associated with

that node, and then marginalize over all of the variables associated with the incoming messages

– Messages from variable node x to variable node fs, µx→fs(x)

µx→fs(x) =
∏

l∈ne(xm)\fs

µfl→x(x) (10)

To evaluate the message sent by a variable node to an adjacent factor node along the link connecting them, take the

product of the incoming messages along all of the other links coming into the variable node.
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Message Passed from Leaf Nodes

Figure 3: Messaging Passing From Leaf Nodes in Sum-Product Algorithm
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Belief Propagation
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Belief Propagation Simulation
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Belief Propagation Simulation: Step 1

fBfA

x2x1

fC

x3 Root Node

fE fD

x5 x4
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Belief Propagation Simulation: Step 2

fBfA fA

x2x1

fC

x3

fE fD

x5 x4
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1

3

1 : µfA→x1(x1) = fA(x1)

2 : µfB→x2(x2) = fB(x12)

3 : µx4→fD(x4) = 1

4 : µx5→fE(x5) = 1
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Belief Propagation Simulation: Step 3

fBfA
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5 : µx1→fC (x1) = µfA→x1 (x1)

6 : µx2→fC (x2) = µfB→x2 (x2)

7 : µfD→x3 (x3) =
∑
∼x3

fD(x3, x4)µf4→fD (x4)

8 : µfE→x3 (x3) =
∑
∼x3

fD(x3, x5)µf5→fC (x5)
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Belief Propagation Simulation: Step 4

fBfA

x2x1

fC

x3

fE fD

x5 x4

9

9 : µfC→x3(x3) =
∑
∼x3

fC(x1, x2, x3)µx1→fC(x1)µx2→fc(x2)
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Belief Propagation Simulation: Step 5

fBfA

x2x1

fC

x3

fE fD

x5 x4
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12 11

10 : µx3→fD(x3) = µfD→x3(x3)µfE→x3(x3)

11 : µx3→fD(x3) = µfC→x3(x3)µfE→x3(x3)

12 : µx3→fE(x3) = µfC→x3(x3)µfD→x3(x3)
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Belief Propagation Simulation: Step 6

fBfA

x2x1

fC

x3

fE fD

x5 x4
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13 : µfC→x1 (x1) =
∑
∼x1

fC(x1, x2, x3)µx2→fC (x2)µx3→fC (x3)

14 : µfC→x2 (x2) =
∑
∼x2

fC(x1, x2, x3)µx1→fC (x1)µx3→fC (x3)

15 : µfD→x4 (x4) =
∑
∼x4

fD(x3, x4)µx3→fD (x3)

16 : µfE→x5 (x5) =
∑
∼x5

fE(x3, x5)µx3→fE (x3)
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Belief Propagation Simulation: Step 7

fBfA

x2x1

fC

x3

fE fD

x5 x4

1817

17 : µx1→fA(x1) = µfC→x1(x1)

18 : µx2→fB(x2) = µfC→x2(x2)
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Belief Propagation Simulation: Termination

fBfA

x2x1

fC

x3

fE fD

x5 x4

g1(x1) = µfA→x1(x1) · µfC→x1(x1)

g2(x2) = µfB→x2(x2) · µfC→x2(x2)

g3(x3) = µfC→x3(x3) · µfE→x3(x3) · µfD→x3(x3)

g4(x4) = µfD→x4(x4)

g5(x5) = µfE→x4(x5)
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Max Sum Algorithm

Goals:

1. Find the maximum of the joint distribution by propagating messages from the
leaves to an arbitrarily chosen root node

2. Finding the configuration of the variables for which the joint distribution attains
this maximum value

• We designate a particular variable node as the ‘root’ of the graph. Then we start a
set of messages propagating inwards from the leaves of the tree towards the root,
with each node sending its message towards the root once it has received all
incoming messages from its other neighbours. The final maximization is performed
over the product of all messages arriving at the root node, and gives the maximum
value for p(x). This is be called the max-product algorithm and is identical to the
sum-product algorithm except that summations are replaced by maximizations.
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Max Sum Algorithm

µfs→x = max
x1...xM

lnf(x, x1, ..., xM) +
∑

m∈ne(f)\x

µxm→f(xm)

 (11)

µx→f(x) =
∑

l∈ne(x)\f

µfl→x(x)

(12)

µx→f(x) = 0 (13)

µf→x(x) = lnf(x) (14)

pmax = max
x

 ∑
s∈ne(x)

µfs→x(x)

 (15)
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Max Sum Algorithm

• Finding the configuration of the variables with maximum joint probability

• If a message is sent from a factor node f to a variable node x, a maximization is
performed over all other variable nodes x1 , ·,xM that are neighbours of that factor
node, using Equation 11.

• When we perform this maximization, we keep a record of which values of the
variables x1 , ·,xM gave rise to the maximum.

• Then, in the back-tracking step, having found xmax , we can then use these stored
values to assign consistent maximizing states xmax

1 , ·,xmax
M .

• The max-sum algorithm, with back-tracking, gives an exact maximizing
configuration for the variables provided the factor graph is a tree.
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Loopy Belief Propagation

• The general idea is to run BP on a graph containing loops

• The fact that the presence of loops does not guarantee convergence

• When the solution converges, it is usually a good approximation.
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Linearized Belief Propagation

• Gatterbauer et al. [1] has derived a matrix formulation of BP like as following,

B = E+ ABH

where, B - beliefs, E - prior belief or unary potential or prior belief, A - adjacent
matrix, and H - pairwise compatibility or pairwise factor matrix

• it iteratively compute the beliefs (like gradients)

• it ensures the exact convergence guarantees (even on graphs with loops)

• it showed promising performances in node classification

[1] Linearized and Single-Pass Belief Propagation, https://arxiv.org/abs/1406.7288
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