# Self supervised learning: non-contrastive

### SSL: Recap

- Three types of learning
  - **Supervised**: You have the data and you have the annotations/labels, you want to perform classification/regression
  - **Unsupervised**: You have the data but no label, and you want to figure out some sort of latent representation from the data e.g. clustering, dimensionality reduction
  - Self supervised: You have the data but no annotations/labels, and you want to perform classification/regression
- Self supervised learning (SSL) tries to take the best from both the worlds of supervised and unsupervised
  - There are often so much data but without labels
  - Labelling requires manual labor, is time consuming and is prone to errors
    - e.g. ImageNet labelling with 14M images took roughly 22 human years <sup>1</sup>

#### Contrastive SSL: Recap



| Query               | An input data point                                                                                                                                             |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Positive<br>key     | An augmented/transformed version of the input data point                                                                                                        |
| Negative<br>key     | All other data in the dataset<br>except the query and<br>positive key                                                                                           |
| Encoder             | Will learn an embedding space of latent representation                                                                                                          |
| Projection<br>Head  | Use some form of<br>projection, contextualization<br>or quantization on the<br>embedding space to learn a<br>better representation                              |
| Contrastive<br>loss | Minimizes the "distance"<br>between query and positive<br>key, while maximizing the<br>"distance" between query<br>and positive key pair and<br>negative key(s) |

#### Contrastive SSL: Recap (continued)

Contrastive Loss: The key component

$$\mathcal{L}^{self} = \sum_{i \in I} \mathcal{L}_i^{self} = -\sum_{i \in I} \log \frac{\exp\left(\boldsymbol{z}_i \cdot \boldsymbol{z}_{j(i)} / \tau\right)}{\sum_{a \in A(i)} \exp\left(\boldsymbol{z}_i \cdot \boldsymbol{z}_a / \tau\right)}$$

Here,  $z_{\ell} = Proj(Enc(\tilde{x}_{\ell})) \in \mathcal{R}^{D_{P}}$ , the  $\cdot$  symbol denotes the inner (dot) product,  $\tau \in \mathcal{R}^{+}$  is a scalar temperature parameter, and  $A(i) \equiv I \setminus \{i\}$ . The index *i* is called the *anchor*, index *j(i)* is called the *positive*, and the other 2(N-1) indices ( $\{k \in A(i) \setminus \{j(i)\}\)$ ) are called the *negatives*.

Note that for each anchor  $i \in I \equiv \{1...2N\}$ , there is 1 positive pair and 2N - 2 negative pairs. The denominator has a total of 2N - 1 terms (the positive and negatives).

### Contrastive SSL: Recap (continued)

#### Caveats

- How much negative data is needed?
  - More negative data usually means that the representation will not collapse into a single cluster
  - Computationally expensive
- Quality of the negative data?
  - More careful selection of negative samples has been shown to improve the convergence rate and performance of the learned embeddings on downstream tasks
  - Consistent with hard negative and positive mining techniques
- Trade-off between quality and quantity
- There are works that do not use negative samples at all (non-contrastive), e.g. Bootstrap Your Own Latent (BYOL), Simple Siamese (SimSiam)

#### Non-contrastive SSL

- Get rid of the idea of "negative samples"
  - Treat every data point as part of the positive samples
  - No batch size limitations
  - No hard negative required
  - Relatively easier to train compared to contrastive approach
- Learn noise and distortion invariant representation for each data point
  - So you can feed the network a very high amount of unlabelled data during pretext task
- Shows on par results with state-of-the-art (SOTA) supervised learning techniques

## Bootstrap Your Own Latent (BYOL): A New Approach to Self-Supervised Learning

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond DeepMind, Google NeurIPS (2020)

## Bootstrap Your Own Latent (BYOL)

- Problem statement
  - A successful approach to SSL is to learn embeddings which are invariant to distortions of the input sample
  - $\circ$   $\;$  How to not deal with negative pairs required in contrastive learning
    - And still perform on par with SOTA supervised and other self-supervised contrastive learning approaches?



- Composed of two almost-identical networks
  - Target network
  - $\circ$  Predictor network  $\rightarrow$  Online
- Almost-identical
  - The weights of the target network is a function of the weights of the predictor network
  - Asymmetric architecture only online network has the predictor



- The predictor network tries to learn an augmentation invariant representation of the input x
  - Make its own prediction match as close as possible to the output of the target network
  - The input to both networks (predictor and online) are two differently transformed versions of the same image



- The weights of the target network is updated after each training step
  - The weights of the target network is given by  $\xi \leftarrow \tau \xi + (1 \tau)\theta$ .
  - Where,  $\tau$  is a target decay between 0 and 1
- The target network uses stop gradient (sg) to prevent back propagation and update of weights, since its weights are updated by the online network.



- The prediction z and z' are both 12 normalized.
- After each training step, minimize the MSE between normalized *prediction* and target *projection* L<sub>θ,ξ</sub>

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}'_{\xi} \right\|_{2}^{2} = 2 - 2 \cdot \frac{\langle q_{\theta}(z_{\theta}), z'_{\xi} \rangle}{\left\| q_{\theta}(z_{\theta}) \right\|_{2} \cdot \left\| z'_{\xi} \right\|_{2}}.$$



- The loss is symmetrized by reversing the inputs
  - $\circ$  v' is fed to the online network
  - $\circ$  v is fed to the target network
  - Compute  $\widetilde{\mathcal{L}}_{\theta,\xi}$



- The actual loss therefore is  $\mathcal{L}_{\theta,\xi}^{\text{BYOL}} = \mathcal{L}_{\theta,\xi} + \widetilde{\mathcal{L}}_{\theta,\xi}$ 
  - Perform a stochastic optimization step on this loss



- The loss L is not simply a gradient descent over  $\xi$  and  $\theta$ 
  - Similar to GANs, where there is no loss that is jointly minimized with respect to both the discriminator and predictor parameters
- Not copying the weights over to the target network makes it resistant to sudden changes in the predictor network



- ResNet with residual CNN with 50 layers used as the basic encoder
  - They have also used deeper and wider residual CNNs
  - The final output has 2048 dimensions
- The projector is an MLP
  - Final output size is 256
- LARS optimizer is used

## Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, Stephane Deny Facebook AI Research ICML (2021)

#### **Barlow** Twins

- Problem statement
  - A successful approach to SSL is to learn embeddings which are invariant to distortions of the input sample
  - A recurring issue with this approach is the existence of trivial constant solutions
    - The embedding space keeps outputting constant vectors i.e. failing to learn the latent representations of the input
    - Known as the collapse problem
  - Contrastive learning is heavily dependent on batch sizes and hard negative mining
  - Can this be done in an easier way?
  - No requirements on:
    - large batches
    - asymmetry between the network twins such as a predictor network
    - gradient stopping
    - a moving average on the weight updates

- Based on the redundancy-reduction principle introduced by Barlow <sup>10</sup> in the field of neurosciences
  - Similar to how humans learn differences between entities
- Take a sample image
- Apply two transformations on it
  - The transformations are chosen from a probabilistic distribution
  - Includes:
    - Random crop
    - Random rotation
    - Color adjustments
    - Jittering
    - Blurring
- Try to minimize the differences in representations between the transformed images



Based on joint embedding learning with siamese networks

- Neural networks that have two or more identical subnetworks with shared weights and same configuration/parameters
- Parameter updating is mirrored across sub-networks



To simplify notations,  $Z^A$  and  $Z^B$  are assumed to be meancentered along the batch dimension, such that each unit has mean output 0 over the batch.



Where,

 $\lambda$  is a positive constant trading off the importance of the first and second terms of the loss and C is the square cross-correlation matrix

$$\mathcal{C}_{ij} \triangleq \frac{\sum_{b} z_{b,i}^{A} z_{b,j}^{B}}{\sqrt{\sum_{b} \left(z_{b,i}^{A}\right)^{2}} \sqrt{\sum_{b} \left(z_{b,j}^{B}\right)^{2}}}$$

Where,

b indexes batch samples

i, j index the vector dimension of the networks' outputs

C is a cross-correlation matrix



The goal is:

- Get the diagonal elements of C as close to 1 as possible
  - Makes the learnt representations invariant to distortions
- Get the off-diagonal elements as close to 0 as possible
  - De-correlate the vector components of the embedding

So, we want a representation that is invariant to distortions and noise, while also preserving maximum information of the entity we are trying to represent



#### Architecture

- Encoder: ResNet-50 network
  - without the final classification layer
  - 2048 output units
- Projector: 3 linear layers
  - each with 8192 output units.
  - The first two layers of the projector are followed by a batch normalization layer and rectified linear units
- LARS optimizer

A very interesting yet unexplained outcome of the study



## VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning

Adrien Bardes, Jean Ponce, Yann LeCun Facebook AI Research ICPS (2021)

#### Problem statement

- A problem in SSL
  - The encoder can end up outputting constant vectors, i.e. a vector of just 1s
  - Known as the collapse problem
- Some form of regularization is needed to solve the collapse problem
- Free from "architectural tricks"
  - BYOL depends on stop gradients and asymmetric networks
- Does not need normalization of projections/embeddings
  - e.g. Barlow Twins
- Achieves results on par with the state of the art on several downstream tasks
- Three simple principles: variance, invariance and covariance



Variance principle

- constraints the variance of the embeddings along each dimension independently
- Use a hinge loss which constrains the standard deviation computed along the batch dimension of the embeddings to reach a fixed target



Invariance principle

• uses a standard mean-squared euclidean distance to learn invariance to multiple views of an image



Covariance principle

- Prevent different dimensions of the same projection from encoding the same information
- Inspired by Barlow Twins



The authors used a limited number of transformations in T

- random crops of the image
- color distortions

• Variance regularization term *v* 

$$v(Z) = \frac{1}{d} \sum_{j=1}^{d} \max(0, \gamma - \sqrt{\operatorname{Var}(Z_{:,j}) + \epsilon}) \qquad \qquad \operatorname{Var}(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

- i = an image sampled from a dataset D,  $i \sim D$
- $\gamma$  = Target value of standard deviation, fixed to 1
- Z = Batch of n vectors of dimension d
- $Z_{i,j}$  = the vector composed of each value at dimension j in all vectors in Z
- $\epsilon = A$  small scalar protecting from numerical instabilities
- $ar{x}$  is the mean of x, n is the size of x

• Variance regularization term *v* 

$$v(Z) = \frac{1}{d} \sum_{j=1}^{d} \max(0, \gamma - \sqrt{\operatorname{Var}(Z_{:,j}) + \epsilon}) \qquad \qquad \operatorname{Var}(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Force variance to be  $\gamma$  along the batch dimension

Use of standard deviation instead of variance in hinge loss because the gradient of the variance can become 0 when input vector is close to the mean vector in the batch

• The covariance matrix of Z

$$C(Z) = \frac{1}{n-1} \sum_{i=1}^{n} (Z_i - \bar{Z}) (Z_i - \bar{Z})^T$$
, where  $\bar{Z} = \frac{1}{n} \sum_{i=1}^{n} Z_i$ .

- $Z_i = i$ -th vector in Z
- The covariance regularization term *c*

$$c(Z) = \frac{1}{d} \sum_{i \neq j} C(Z)_{i,j}^2$$

• The invariance criterion *s* between Z and Z'

$$s(Z, Z') = \frac{1}{n} \sum_{i} ||Z_i - Z'_i||_2^2.$$

Z' is the output of the other subnetwork of the siamese network. Neither Z nor Z' is normalized via standardization or projection onto unit sphere

• The final loss function is therefore

$$\ell(Z, Z') = \lambda s(Z, Z') + \mu \{ v(Z) + v(Z') \} + \nu \{ c(Z) + c(Z') \},$$

 $\lambda,\,\mu$  and  $\nu$  are the hyperparameters controlling importance of each term.

They are found by grid search as stated by the authors



• The final loss over the entire dataset is therefore

$$\mathcal{L} = \sum_{I \in \mathcal{D}} \sum_{t, t' \sim \mathcal{T}} \ell(Z^I, Z'^I),$$

where  $Z^{I}$  and  $Z'^{I}$  are the batches of projection vectors corresponding to the batch of images I transformed by t and t', and is minimized over the encoder parameters  $\theta$  and projector parameters  $\phi$ . <sup>35</sup>

#### Further study

- Simple Siamese Networks (SimSiam)<sup>1</sup>
  - Published in a similar timeframe as BYOL
  - Two differences with BYOL:
    - The weights of the encoders are shared
    - The loss function is the symmetrized negative cosine similarity instead of MSE.
- There are a number of factors that the authors of BYOL and Barlow Twins have mentioned which helps them avoid the collapse problem (empirically proven)
  - $\circ$   $\;$  Weights of target network is an EMA of the weights of the target network
  - Use of weight decay
  - Use of relatively higher learning rate in the predictor network compared to the target network
- But why exactly do these work?
  - Explained in the "Understanding Self-Supervised Learning Dynamics without Contrastive Pairs"<sup>2</sup> paper

<sup>&</sup>lt;sup>1</sup> Exploring Simple Siamese Representation Learning, CVPR (2021)

<sup>&</sup>lt;sup>2</sup> Understanding Self-Supervised Learning Dynamics without Contrastive Pairs, ICML (2021)

#### Further study (continued)



- Understanding Self-Supervised Learning Dynamics without Contrastive Pairs<sup>2</sup>
  - Two-fold contribution
    - Explain why the mentioned constraints on the target and predictor networks work mathematically
    - DirectPred
  - Discover an important relation between weights of the encoder and the predictor
    - Eigenspace alignment <sup>2</sup> <sup>3</sup>
  - $\circ$  This discovery leads to an important conclusion
    - The weights of the predictor network can be directly found out using the correlation matrix of the inputs
    - Dubbed as DirectPred in the paper
    - No need for gradient descent
  - DirectPred performs on par with BYOL, Barlow Twins with a significantly simpler network structure
- <sup>2</sup> Facebook AI Research, Understanding Self-Supervised Learning Dynamics without Contrastive Pairs (2021)
- <sup>3</sup> Facebook AI Research Blog, Demystifying a key self-supervised learning technique: Non-contrastive learning (2021) link