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Chapter 1

Basics of Random Matrices

Ginibre Ensemble: A random matrix is a matrix whose entries are random variables. Let {Xij ; i, j ∈ N} be
a collection of i.i.d. standard normal random variables. Let GN be an N ×N matrix with

GN (i, j) = Xij , 1 ≤ i, j ≤ N

This random matrix is called a Ginibre ensemble.

Wigner Matrix: Define WN by

WN (i, j) = Xi∧j,i∨j 1 ≤ i, j ≤ N

WN is called Wigner matrix. The Wigner matrix is Hermitian while Ginibre ensemble is not. The upper triangle
entries of the Wigner matrix will be i.i.d. 

X11 X12 · · · X1n

X12 X22 · · · X2n

...
...

. . .
...

X1n X2n · · · Xnn


Defn. Given µ ∈ Rp and a p× p n.n.d(non-negative definite) matrix Σ, we say a p-variate random vector X,
follows Np(µ,Σ) if ∀λ ∈ Rp

λ⊤X ∼ N
(
λ⊤µ, λ⊤Σλ

)
Convention. Elements of Rp are to be thought of as a p× 1 vectors.

x11 x12 · · · x1n

x12 x22 · · · x2n

...
...

. . .
...

x1n x2n · · · xnn


Wishart Matrix: Suppose X1, X2 . . . , Xn are i.i.d from Np(µ,Σ). Then Σ̂ = 1

n

∑n
i=1 (Xi − µ) (Xi − µ)

⊤
is

an estimator of Σ. The matrix Σ̂ is called the Wishart matrix

Defn. Suppose µ, µ1, µ2, . . . are probability measures on R. We say µn ⇒ µ, that is, µn converges to µ
weakly, if

lim
n→∞

∫
fdµn =

∫
fdµ

for every bounded continuous function f : R → R

Defn. Given any probability measure ν on R, there exists a random variable X such that,

P (X ∈ A) = ν(A) for all A.

We shall say “X has distribution ν”.

Fact. If X has distribution ν, then

E[f(x)] =

∫
fdv =

∫
f(x)ν(dx)

2
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For random variables X1, X2, . . . , X,

Xn ⇒ X simply means

lim
n→∞

E [f (xn)] = E[f(x)]

for any bounded continuous f : R → R.

Fact. (Method of Moment) For Random variables (RVs) X,X1, Xi, . . . having finite moments, assume

lim
n→∞

E
[
Xk

n

]
= E

[
Xk
]
, ∀k ∈ N .

Then Xn ⇒ X only if the moments ”determine” the distribution X.

Fact. Suppose ν, ν1, ν2 . . . are probability measures with finite moments such that

lim
n→∞

∫
xkνn(dx) =

∫
xkν(dx), k ∈ N .

Furthermore, assume ν is determined by its moments. Then νn ⇒ ν, n → ∞.
A measure ν is determined by its moments if whenever∫

xkν(dx) =

∫
xkµ(dx) ∀k = 1, 2, . . . then

ν = µ.

Fact. (Carleman’s condition) Suppose {mk}∞k=1 is the moment sequence of a probability measure µ. If

∞∑
k=1

m
−1/2k
2k = ∞

then {mk} determines µ.

Fact. If µ is a probability measure such that∫
etxµ(dx) < ∞ for all t ∈ (−1, 1)

for some ε > 0, then µ has finite moments which determines µ. [mgf is finite in the neighborhood of µ ]

Corollary. If µ is a compactly supported probability measure, then µ is determined by its moments.

Exercise. Show that the standard normal distribution is determined by its moments.

Exercise. (Needs Gamma integrals) Show that for k = 1, 2, 3, . . .∫ ∞

−∞
xk e

−x2/2

√
2π

dx =

{
k!

2k/2(k/2)!
, if k is even

0, if k is odd.

Example, for k = 4.∫ ∞

−∞
x4e−x2/2dx

= 2

∫ ∞

0

x4e−x2/2dx

= 2

∫ ∞

0

(2y)3/2e−ydy︸ ︷︷ ︸
Gamma integral

Let, y = x2/2

∴ dy = xdx

Again, 2y = x2

∴ (2y)3/2 = x3
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Central limit theorem: Suppose X1, X2, . . . are i.i.d. zero mean RV s with finite variance σ2. Then as n → ∞
1√
n
(X1 +X2 + · · ·+Xn) ⇒ Z, where Z ∼ N

(
0, σ2

)
Proof: (under the additional assumption that all moments of X1 are finite) Let, Sn = X1 + X2 + . . . + Xn

clearly, E [Sn] = 0 and E
[
S2
n

]
= V ar [Sn] =

∑n
i=1 V ar (Xi) = n Since X1, X2, X3, · · · , Xn are i.i.d. RVs

(Without loss of generality and σ2 = 1) We want to compute,

E
[
S4
n

]
= E

( n∑
i=1

Xi

)4


= E

 n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

XiXjXkXl


=
∑
i,j,k,l

E (XiXjXkXl) (1.1)

If i, j, k, l are distinct, then

E (XiXjXkXl) = E [Xi]E [Xj ]E [Xk]E [Xi] = 0

In fact, whenever one of i, j, k, l is “isolated”, that is, it is distinct from the other three,

E [XiXjXkXl] = 0

In other words, E [XiXjXkXl] = 0 unless one of the following holds
(I) i = j = k = l (II) (i = j) ̸= (k = l)
(III) (i = k) ̸= (j = l) (IV) (i = l) ̸= (j = k)

Continuing from 1.1, we write

E
(
S4
n

)
= nE

(
X4

1

)
+ 3n(n− 1)

E

[(
S4
n√
n

)4
]
=

1

n2
E
[
S4
n

]
→ 3 an n → ∞

To generalize: Let k be a positive even integer. As before,

E
[
Sk
n

]
= E

( n∑
i=1

Xi

)k


= E

 n∑
i1,...,ik=1

(Xi1 . . . Xik)


=

n∑
i1,i2,...,ik=1

E (Xi1Xi2 · · ·Xik)

Given, (i1, . . . ik) ∈ {1, . . . , n}k
E [Xi1 . . . Xik ] = 0 if there is any ”isolated” index i1, i2 . . . , ik
That is there exists a partition P1, P2, . . . , Pl of {1, . . . , k} such that

#Pj ⩾ 2 (#Pj means cardinality of Pj)

P1 ∪ P2 ∪ . . . ∪ Pl = {1, 2, . . . , k} and P1, P2, . . . , Pl are disjoint

iu = iv ⇔ u, v ∈ Pj for some j (1.2)

Thus,

E
(
Sk
n

)
=

∑
P1,...,Pl

∑
(i1,...,ik)∈{1,...,n}k

such that (∗∗)holds

E [X1, . . . Xk]

=
∑

n(n− 1) · · · (n− l + 1)E
(
X#P1

1

)
E
(
X#P2

1

)
· · ·E

(
X#Pl

1

)
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Given the partition P1, . . . , Pl of {1, . . . , k} with

#Pj ⩾ 2, l ≤ k/2

Equally holds if and only if #Pj = 2 that is (P1, P2, · · · , Pl) is a pairing of {1, 2, · · · , k}
Thus,

E
[
Sk
n

]
=

∑
P1,P2...,Pk/2

is a pairing of {1,...,k}

n(n− 1) · · · (n− k/2 + 1) +O
(
nk/2

)

= n(n− 1) · · · (n− k/2 + 1)
k!

2k/2(k/2)!
+ 0

(
nk/2

)
Therefore,

lim
n→∞

n−k/2E
[
Sk
n

]
=

k!

2k/2(k/2)!
+O

(
nk/2

)
for an even k

Note: It is easier to show that

lim
n→∞

n−k/2E
[
Sk
n

]
= 0 if k is odd

Therefore, we showed that,

lim
n→∞

E

[(
Sn√
n

)k
]
= E

(
Zk
)

for k = 1, 2, . . ., where Z follows standard normal distribution. The method of moment completes the proof.

For an Hermitian matrix A of size N×N enumerate its eigenvalues in the ascending order by λ1(A), . . . , λN (A).
Defn. For an N ×N random matrix W , define its ”empirical spectral distribution” or ESDW by the measure

ESDW (A) =
1

N

N∑
i=1

δλi(W )(A) for all A ⊆ R

Here δx(A) =

{
1, if x ∈ A

0, if x ̸= A

In other word,

ESDW (A) =
1

N

∑
1 (λi(W ) ∈ A)

=
1

N
#{i : 1 ≤ i ≤ N , λi(W ) ∈ A}

Defn. The expected empirical spectral distribution or EESD of W is

EESDw(A) = E (ESDw(A))

= E

(
1

N

N∑
i=1

1 (λi(w) ∈ A)

)

=
1

N

N∑
i=1

P (λi(w) ∈ A)

In other words, EESDW (A) is nothing but the average of the distributions of λ1(w) . . . , λn(w)
In measure theory language, ∫

f(x)EESDw(dx) =
1

N

N∑
i=1

E[f(λi(w))]

Let, {Xij : 1 ≤ i ≤ j} be i.i.d RV s with all moments finite. Define a Wigner matrix WN by

WN (i, j) =

{
Xij , if i ≤ j

Xji, if i > j
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Our goal is to use the Method of Moment for studying EESDWN

The first moment of EESDWN ∫ ∞

−∞
xEESDWN

=
1

N

N∑
i=1

E[λi(WN )]

=
1

N
E

(
N∑
i=1

(λi(WN ))

)

=
1

N
E [Tr(WN )]

=
1

N
E

(
N∑
i=1

WN (i, i)

)

=
1

N
E

(
N∑
i=1

Xii

)
= 0.

The second moment of EESDWN∫ ∞

−∞
x2EESDWN

(dx)

=
1

N
E

(
N∑
i=1

λ2
i (WN )

)

=
1

N
E

(
N∑
i=1

λi(W
2
N )

)

=
1

N
E
[
Tr(W 2

N )
]

=
1

N
E

 N∑
i=1

N∑
j=1

(WN (i, j))2


=

N2

N
σ2 = Nσ2

where σ2 = V ar(Xij) = E(Xij)
2

Tr(W 2
N )

=

N∑
i=1

W 2
N (i, i)

=

N∑
i=1

N∑
j=1

WN (i, j)WN (j, i)

=

N∑
i=1

N∑
j=1

(WN (i, j))2

As Nσ2 blows up, we need to scale to get a limit. To get a “finite limit”, we scale WN by
√
N . Look

at,

ESDWN√
N

=
1

N

N∑
i=1

δ
λi(

WN√
N

)

=
1

N

N∑
i=1

δλi(WN )√
N

and, EESDWN√
N

=

∫ ∞

−∞
x2ESDWN√

N

(dx)

=
1

N

N∑
i=1

(
λi√
N

(WN ))2

=
1

N2

N∑
i=1

λ2
i (WN )

Exercise. Check that, ∫ ∞

−∞
x2EESDWN√

N

(dx) = σ2
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Theorem: (Wigner’s Surmise) As N → ∞, EESDWN√
N

⇒ µsc

where µsc is the probability measure, whose density is

f(x) =

{
1
2π

√
4− x2, − 2 ≤ x ≤ 2

0, Otherwise

Often µsc is called the semi-circle distribution.

−2 2

f(x)

Fourth Moment:
If P is an N ×N matrix, then

P k(i, j) =

N∑
i1,i2,··· ,ik−1=1

P (i, i1)P (i1, i2) · · ·P (ik−1, j)

∴
∫ ∞

−∞
x4EESDWN√

N

(dx) =
1

N

N∑
i=1

E

[
λ4
i

(
WN√
N

)]

=
1

N3

N∑
i=1

E
[
λ4
i (WN )

]
=

1

N3

N∑
i=1

E
[
λi

(
W 4

N

)]
=

1

N3
E
[
Tr
(
W 4

N

)]
=

1

N3
E

(
N∑
i=1

W 4
N (i, i)

)

=
1

N3
E

 N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

WN (i, j)WN (j, k)WN (k, l)WN (l, i)


=

1

N3

N∑
i,j,k,l=1

(E [WN (i, j)WN (j, k)WN (k, l)WN (l, i)])

Here, WN (i, j) = Xi ∧ j︸︷︷︸
min

,i ∨ j︸︷︷︸
max


=

1

N3

N∑
i,j,k,l=1

(E [Xi∧j,i∨jXj∧k,j∨kXk∧l,k∨lXl∧i,l∨i])

= 0 if one of the i, j, k, l is isolated

(From the experiment in Central Limit Theory) We know, we need to consider pairing. That is one of the
following must hold:
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Case1: {i, j} = {j, k} and {k, l} = {l, i}
Putting i = l ensures both constraints(non-crossing). Approximately O(N3) many (i, j, k, l) satisfy this.

Case2: {i, j} = {k, l} and {j, k} = {l, i}
At most O(N2) choices.

Case3: {i, j} = {l, i} and {j, k} = {k, l}
Since j = l satisfies both constraints, there are O(N3) choices.
Therefore ,

lim
n→∞

1

N3
E
[
Tr(W 4

N )
]
= 2

Case 1: ( ) [ ] → valid

Xi∧j,i∨j Xj∧k,j∨k Xk∧l,k∨l Xl∧i,l∨i

Case 2: ( [ ) ] → not valid

Xi∧j,i∨j Xj∧k,j∨k Xk∧l,k∨l Xl∧i,l∨i

Case 3: ( [ ] ) → valid

Xi∧j,i∨j Xj∧k,j∨k Xk∧l,k∨l Xl∧i,l∨i
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1.1 Supplementary Material

Gamma and Beta Integral
Defn: For α > 0, Γ(α) =

∫∞
0

e−xxα−1dx (Euler’s Gamma function)

β(a, b) =

∫ 1

0

xa−1(1− x)b−1dx where a > 0, b > 0 (Beta function)

Theorem: For α > 0,Γ(α+ 1) = αΓ(α)
Proof: Integration by parts to get

Γ(α+ 1) =

∫ ∞

0

e−xxαdx

= (e−x)xα|∞0 −
∫ ∞

0

(−e−x)αxα−1dx

= α

∫ ∞

0

e−xxα−1dx

= αΓ(α)

Since Γ(1) = 1, we get
Γ(2) = 1.Γ(1) = 1

Γ(3) = 2.Γ(2) = 2.1 = 2

...

Γ(n+ 1) = n! where n ∈ R

Exercise: Calculate Γ( 12 )
Work:

Γ(
1

2
) =

∫ ∞

0

e−xx
1
2−1dx let, x =

y2

2

=

∫ ∞

0

e−y2/2

(
y2

2

)−1/2

ydy ⇒ dx = ydy

=
√
2

∫ ∞

0

e−y2/2dy =
√
2 · 1

2

√
2π

=
√
π

Exercise: Calculate Γ
(
2k+1

2

)
for k ∈ N

Soln: Write 2k+1
2 = 2k−1

2 + 1

Γ(
2k + 1

2
) =

2k − 1

2
Γ(

2k − 1

2
)

=
2k − 1

2
.
2k − 3

2
· · · 1

2
Γ(

1

2
)

=
2k − 1

2
.
2k − 3

2
· · · 1

2
.
√
π

=
(2k)!

2k.(2.4 · · · .2k)
.
√
π

=
(2k)!

4k.k!
.
√
π
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Exercise: Calculate the even moments of standard normal.
Soln: Fix k ∈ R. Then,

E[X2k] =

∫ ∞

−∞
x2k e

− x2

2

√
2π

dx

=

√
2

π

∫ ∞

0

e−
x2

2 x2kdx let, y =
x2

2

=

√
2

π

∫ ∞

0

e−y(2y)
2k−1

2 dy ⇒ dy = xdx

=
2k√
π

∫ ∞

0

e−yy
2k+1

2 −1dy

=
2k√
π
Γ

(
2k + 1

2

)
=

2k√
π

(2k)!

4kk!

√
π

=
(2k)!

2kk!

Thus, the 2k-th moment of the standard normal is (2k)!
2k(k!)

Fact: For a > 0 and b > 0

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

Exercise: Calculate the even moments of the semicircle law ( Note: Odd moments vanish)
Soln: For k ∈ N

E
[
X2k

]
=

1

2π

∫ 2

−2

x2k
√

4− x2dx let, x2 = 4y

=
1

π

∫ 1

0

(
2y

1
2

)2k−1√
4− 4y · 2dy ⇒ 2xdx = 4dy

=
22k+1

π

∫ 1

0

y
2k−1

2 (1− y)1/2dy ⇒ xdx = 2dy

=
22k+1

π
·B(

2k + 1

2
,
3

2
)

=
22k+1

π
·
Γ
(
2k+1

2

)
Γ( 32 )

Γ(k + 2)

=
22k+1

π
·

(2k)!
k!4k

·
√
π · 1

2

√
π

(k + 1)!

=
(2k)!

k!(k + 1)!



Chapter 2

Wigner’s Semicircle Law

Theorem: (Wick’s formula) If (G1, . . . , Gw ) are Nk(O,Σ), then

E (G1, . . . , Gk) =

{∑
π∈Gk

∏
(u,v)∈π E(GuGv), if k is even

0, if k odd .

For any even number k, P (k) denotes the set of pair partitions of {1, . . . , k}
For example, for k = 4,

P (4) = {{(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)}}
Convention: Any element of P (2k) will be denoted by

{(u1, v1), . . . , (uk, vk)} where u1 < . . . < uk and uj < vj for j = 1 . . . k

Proof: Denote G = (G1, . . . , Gk). Let Z(1), Z(2), . . . Zk be i.i.d. copies of G. We know Gaussians are
symmetric. Symmetry implies,

(−G1, . . . ,−Gk)
d
= (G1, . . . , Gk)

if k is odd, −G1 . . . Gk
d
= G1 . . . , Gk

E(G1, . . . , Gk) = 0

Now assume WLOG; k = 2m for any m ≥ 1.
Properties of multivariate normal (sum of i.i.d. normal is normal) imply,

n−1/2
(
Z(1) + Z(2) + · · ·+ Z(n)

)
d
= G for all n ≥ 1

Fix n. The above implies,

2m∏
j=1

Gj
d
=

2m∏
j=1

n−1/2
n∑

i=1

Z
(i)
j Z(1) = (Z

(1)
1 , . . . , Z

(1)
k )

= n−m
2m∏
j=1

n∑
i=1

Z
(i)
j

= n−m
n∑

i1=1

n∑
i2=1

· · ·
n∑

i2m=1

2m∏
j=1

Z
(ij)
j

= n−m
∑

f :{1,...,2m}→{1,...,n}

2m∏
j=1

Z
(f(j))
j

Thus,

E

 2m∏
j=1

Gj

 = n−m
∑

f :{1,...,2n)→{1,...,n}

E

 2m∏
j=1

Z
(f(j))
j


Recall, Z

(f(i))
i and Z

(f(j))
j are independent if f(i) ̸= f(j).

Suppose, i ∈ Range(f), if #{j : f(j) = i} is odd then,

E

 2m∏
j=1

z
f(j)
j

 = 0

11
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(we proved the for the case k = odd)
Therefore,

E

 2m∏
j=1

Gj

 = n−m
∑

f :{1,...,2m}→{1,...,n}
such that #{j:f(j)=i} is even for all i

E

 2m∏
j=1

Z
(f(j))
j


∴ If f satisfies the above, then

# Range (f) ≤ m

The number of functions f : {1, . . . , 2m} → {1, . . . , n} with #Range(f) ≤ m− 1 is O(nm−1)
As n → ∞,

∴ E

 2m∏
j=1

Gj

 = O(1) + n−m
∑

f :{1,...,2m}→{1,...,n}
such that #{j:f(j)=i} is even for all i

E

 2m∏
j=1

Z
(f(j))
j



= O(1) + n−m
∑

π∈P (2m)

∑
f :{1,...,2m}→{1,...,n}

such that f(u)=f(v)when(u,v)∈π

E

 2m∏
j=1

Z
(f(j))
j


= O(1) + n−m

∑
π∈P (2m)

n(n− 1) . . . (n−m+ 1)
∏

(u,v)∈π

E(GuGv)

As n → ∞,

E

 2m∏
j=1

Gj

 =
∑

π∈P (2m)

∏
(u,v)∈π

E(GuGv)

This completes the proof of Wick’s formula. ■

Defn: Suppose X and Y are iid from N(0, 1
2 ). Define Z = X + iY where i =

√
−1 then Z is said to fol-

low standard CN (complex normal distribution).

Exercise: Calculate E(Z), E(Z2) and E(|Z|2).
Soln:

E(Z) = 0 and E
(
Z2
)
= E

(
X2 − Y 2 + 2iXY

)
= 0

E
(
|Z|2

)
= E

(
X2 + Y 2

)
= 1

Defn: Let ( Zij : 1 ≤ i ≤ j ) be iid RVs from standard CN. Define a matrix WN by

WN (i, j) =


Zij , if i < j

Z̄ij , if i > j here, Z̄ = complex conjugate of Z√
2R (Zii) , if i = j

Then the random matrix Wd is called a Gaussian Orthogonal Ensemble (GOE).
Exercise: Check that WN is Hermitian, that is WN = W ∗

N . In particular, eigen values of WN , are real.

Exercise: For 1 ≤ i, j, k, l ≤ N , show that

E (WN (i, j)WN (k, l)) =

{
1, if i = l and j = k
0, otherwise

Denote

δ(u, v) =

{
1, u = v

0, otherwise.

Therefore,
E (WN (i, j)WN (k, l)) = δ(i, l)δ(j, k).
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For fixed k = 1, 2, . . ., ∫ N

−∞
xk EESDWN√

N

(dx) =
1

N

N∑
i=1

E

[
λk
i

(
WN√
N

)]

=
1

N1+k/2

N∑
i=1

E
(
λk
i (WN )

)
=

1

N1+k/2
E
(
Tr
(
W k

N

))
=

1

N1+k/2

N∑
i1,i2,...,ik=1

WN (i1, i2) · · ·WN (ik−1, ik)WN (ik, i1)︸ ︷︷ ︸
k times.

=
1

N1+k/2

N∑
i1,...,ik=1

E (WN (i1, i2) . . .WN (ik, i1))

If k is odd, then this is zero. Assume k is even positive number, then Wick’s formula implies that the above
equals,

1

N1+k/2

N∑
i1,i2,...ik=1

∑
π∈P (k)

∏
(u,v)∈π

E (WN (iu, iu+1)WN (iv, iv+1)) .

For the moment, fix π ∈ P (k). Then,∏
(u,v)∈π

E (WN (iu, iu+1)WN (iv, iv+1)) =
∏

(u,v)∈π

δ(iu, iv+1)δ(iu+1, iv)

Denote, k = 2m and π = {(u, v1) , . . . , (um, vm)} following the convention laid down in the beginning. Although
π is a pair partition, it can be thought of a function from {1, . . . , 2m} → {1, . . . , 2m} with

π(x) =

{
vj , if x = uj for some j

uj , if x = vj for some j

Define γ : {1, .., 2m} → {1, . . . , 2n} by

γ(j) =

{
j + 1, if j ̸= 2m
1, if j = 2m

Thus for (u, v) ∈ π
δ (iu, iv+1) = δ

(
iu, iγπ(u)

)
and δ (iu+1, iv) = δ

(
iv, iγπ(v)

)
Hence, ∏

j=1

δ(iu, iv+1)δ(iu+1, iv) =

2m∏
j=1

δ(ij , iγπ(j)) =

{
1, if ij = γπ(j),∀j
0, otherwise

Recall that,

N∑
i1,i2,···ik=1

2m∏
j=1

δ(ij , iγπ(j)) (2.1)

Exercise: Show that, any permutation is the composition of disjoint cycles.
Suppose, γπ = {s1, . . . , sm} where S1, . . . , sm are disjoint cycles.
Equation (2.1) holds if and only if, iu = iv for all u, v ∈ Sj

If #(γπ) denotes the numbers of cycles in δπ then

N∑
i1,...,i2m=1

∏
(u,v)∈π

δ (iu, iv+1) δ (iu+1, iv) = N#(γπ)

In this exercise #(γπ) = m. Thus,∫ ∞

−∞
x2m EESDWN√

N

(dx) =
∑

π∈P (2n)

N#(γπ)−1−m
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We prove the following theorem, Genus Expansion for m,N ⩾ 1. Now as N → ∞ what happens?
Theorem: For all π ∈ P (2 m),

#(γπ) ≤ m+ 1 (2.2)

Equality holds if and only if π is a non-crossing pair partition, that is, there do not exist

u < v < ω < z with (u,w), (v, z) ∈ π

Example of non-crossing pair partition.

1 2 3 4 5 6

Example of crossing pair partition.

1 2 3 4 5 6

Lemma: Suppose, π = {(u, v1) , . . . , (um, vm)}and {w1, . . . , wm} is a cycle of γπ. If,

w1 = min
1≤j≤m

wj (2.3)

Then, W1 ∈ {1, u1 + 1, . . . , um + 1}. Thus 2.2 holds. [number of cycles can’t exceed m+ 1 ]

Trivially, w1 = γπ (wm). There are 2 cases which are:
Case 1: wm = uj for some j
Case 2: wm = vj for some j

In case 1:

w1 = γπ (wm) = γ (vj) =

{
vj+1, if vj ̸= 2m

1, if vj = 2m

That, w1 = vj+1 is impossible because then 2.3 would be violated. Thus in this case, necessarily vj = 2m and
hence w1 = 1

In case 2: w1 = γπ (wm) = γπ (vj) = γ (uj) = uj+1

Thus the claim of the lemma holds.

1 2 3 4 5 6

At least one of the numbers is paired to the next number.

γπ(3) = γ(2) ⇒ singleton cycle

→ removing one non-crossing pair we get again another non-crossing pair partition.
→ recursively keep removing pairs.
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Lemma: Suppose, π ∈ P (2m) and there exists x ∈ {2, 3, . . . , 2m} such that, (x − 1, x) ∈ π (pairing of
consecutive numbers) Then {x} → singleton cycle in γπ
Furthermore, π′ = π − {(x− i, x)}
π′ is a pairing of {1, . . . , 2m}\{x− 1, x}︸ ︷︷ ︸ and γ′ is the cyclic permutation of defined in the obvious way, then

# (γ′π′) = # (γπ)− 1

Proof of the theorem: #(γπ) ≤ m + 1 has been established. Suppose, π is a non-crossing pair partition.
Then there exists x ∈ {2, . . . , 2m} such that (x− 1, x) ∈ π. By the previous lemma, removal of (x− 1, x) from
π means, we lose one cycle from γπ. Recursively by deleting (m− 1) pairs and hence losing (m− 1) cycles, we
end up with {1, 2}. This pair partition pre-multiplied with γ has 2 cycles. This shows,

#(γπ) = m+ 1 γπ(x) = x

π(x) = x− 1

For the converse, assume #(γπ) = m+1. Assume for the sake of contradiction that π is a crossing-pair partition.
If two consecutive elements in π, they can be deleted using the previous lemma at the expense of one cycle in
γπ. Inductively, we eventually get π′ ∈ P (2k) for some k with #(γ′π′) = k + 1 such that there does not exist
any x ∈ {2, . . . , 2k} with (x− 1, x) ∈ π′ Since, #(γ′π′) = k+1, at least two of them are singleton. Say, {y} and
{z}. Then, let x = y ∨ z. Thus −2 ≤ x ≤ 2 and since {x} is a cycle in γ′π′, it follows that (x− 1, x) ∈ π.
This contradiction proves that π is a non-crossing partition.■

Combining this theorem with Genus expansion, we get∑
N#(8π)−m−1)

lim
N→∞

∫
x2m ESDWN√

N

(dx) = #{number of non-crossing pairing of {1, . . . , 2m}}

Lemma: The number of non-crossing pairings of {1, 2, . . . , 2 m} equals Cm = (2m)!
m!(m+1)! . We call Cm the

m-th Catalan number.
Proof:

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

As evident from the above diagram,

the number of non-crossing pair partitions of {1, 2, . . . , 2 m} (2.4)

= the number of Dyck paths from (0, 0) to (0, 2m) which never goes below the horizontal axis.



16 CHAPTER 2. WIGNER’S SEMICIRCLE LAW

The ‘Reflection principle’ implies that

#Dyck paths from (0, 0) to (2n, 0) that touch − 1

= # of Dyck paths from (0,−2) to (2m, 0)

=

(
2m

m− 1

)
.

(by (2.4) becomes) =

(
2m

m

)
−
(

2m

m− 1

)
=

(2m)!

m!m!
− (2m)!

(m− 1)!(m+ 1)!

= (m+ 1−m)
(2m)!

m!(m+ 1)

=

(
(2m)!

m!(m+ 1)!

)
Exercise: Prove this by induction on m.

From yesterday’s lecture, ∫ 2

−2

x2m 1

2π

√
4− π2dx =

(2m)!

m!(m+ 1)!

Everything put together imply,

lim
N→∞

∫ ∞

−∞
xk EESDWN√

N

(dx) =

∫ ∞

−∞
xkµsc(dx) for all k.

Since the semicircle law is compactly supported, it is determined by its moments. The method of moment
proves the following:
As N → ∞,

EEDWN√
N

⇒ µsc

where WN is the N ×N , GOE(Gaussian Orthogonal Ensemble)

Universality:
If WN is of Wigner matrix with iid entries from a zero mean unit variance distribution, then (2.4) holds



Chapter 3

Wishart Matrices

Theorem:
For z ∈ C+

SESDA
(z) =

1

N
Tγ

(
(A− zIN )

−1
)

Let, Xn1
, . . . , Xnm

be iid RV s from Np1
(0, Ipn

). The subscript “n” will be suppressed.
Define WN = 1

n

∑n
i=1 XiX

⊤
i is a p× p Wishart Matrix (Sample equivalent matrix).

Fix z ∈ C+. Then

SESDN
N
(z) =

1

p
Tr
[
(ωN − zΨP )

−1
]

=
1

p
Tr

[(
1

n

∑
XiX

T
i − zIp

)−1
]

=
n

p
Tr

[(∑
XiX

⊤
i − nzIP

)−1
]

=
n

p
Tr

(n−1∑
i=1

XiX
⊤
i − nzIp +XnX

⊤
n

)−1


Denote,

B =

 n∑
i=p

XpX
T
p − nzIp


A =

n−1∑
i=1

XiX
T
i − nzIp

∴ B = A+XnX
⊤
n

Thus, SESDN
(E) =

n

p
Tr
(
B−1

)
.

17
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If C is any n× n invertible matrix, then(
c+ xy⊤

)
=
(
I + xy⊤c̄1

)
c

∴ (c+ xy)−1 = c−1
(
I + xy⊤c−1

)−1

= c−1
(
I − xy⊤c−1 +

(
xy⊤c−1

)2 −
(
xy⊤c−1

)3
+ · · ·

)
= c−1(I − xy⊤c−1 + x y⊤c−1︸ ︷︷ ︸

scalar

x
√
c−1 + · · · )

= c−1
(
I − xy⊤c−1 +

(
y⊤c−1x

) (
xy⊤c−1

)
−
(
y⊤c−1x

)2
xy⊤c−1 + · · · )

= c̄−1
(
I − xy⊤c̄−1

(
1−

(
y⊤c−1x

)
+
(
y⊤c−1x

)2
+ · · · ))

= c−1

(
I − xy⊤c̄−1 1

1 + y⊤c−1x

)
= c−1 − c−1xy⊤c−1

1 + y⊤c−1x
(check that this indeed is the inverse)

whenever y⊤e−1x ̸= −1.

Calculate: y⊤
(
c+ xy⊤

)−1
x = y⊤c−1x− (y⊤c−1x)

2

1+y⊤c−1x
= y⊤c−1x

1+y⊤c−1x
.

Back to the proof:

∴ X⊤
n B−1Xn = Xn

(
A+XnX

⊤
n

)−1
Xn

=
X⊤

n A−1Xn

1 +X⊤
n A−1Xn

≈
E
(
X⊤

n A−1Xn

)
1 + E

(
X⊤

1 A−1Xn

)
*We could have,

Ak =
∑

i∈{1,...,n}

XiX
T
i − nZIk

XT
k B

−1Xk ≈
E(XT

k A
−1
k Xk)

1 + E(XT
k A

−1
k Xk)

XT
k A

−1
k Xk

d
= XT

1 A
−1
1 X1

Suppose, Z ∼ Np(0, I)
Assume, Λ is pxp real symmetric matrix

Z⊤ ∧ Z, ∧ = PDP⊤

Z⊤ ∧ Z = Z⊤PDP⊤Z

=
(
P⊤Z

)⊤
D
(
P⊤Z

)
Since, D = diag(λ1, . . . , λp)

and PTZ =

v1
...
vp

 ∼ N(0, Ip)

Z⊤ ∧ Z =

p∑
i=1

λiV
2
i

E
(
Z⊤ ∧ Z

)
=
∑

λiE
(
V 2
i

)
=
∑

λi = Tr(Λ)

Var
(
Z⊤ ∧ Z

)
= 2Σλ2

i = 2Tr
(
Λ2
)

X0 ∴ Taking any X⊤
k B−1Xk for k = 1, . . . n,

we get,
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E
(
X⊤

n A−1Xn

)
1 + E (X⊤

n A−1Xn)
≈ 1

n

n∑
k=1

X⊤
k B−1Xk.

E
(
X⊤

1 A−1Xn

)
= EA[E

(
X⊤A−1Xn

)
| A]

= E
[
Tr
(
A−1

)]
We know,

B = A+XnX
⊤
n

=

n∑
i=1

XiX
⊤
i − nzIp +XnX

⊤
n

=
∑

XiX
⊤
i = B + nzIr

Thus,
E
[
Tr(A−1)

]
1 + E [Tr(A−1)]

≈ 1

λ

n∑
k=1

XT
k B

−1Xk

=
1

n

n∑
k=1

Tr
(
X⊤

k B−1Xk

)
=

1

n

n∑
k=1

Tr
(
B−1XkX

⊤
k

)
=

1

n
Tr

(
n∑

k=1

(
B−1XkX

⊤
k

))

=
1

n
Tr

(
B−1

n∑
k=1

XkX
⊤
k

)

=
1

n
Tr
(
B−1 (B + nzI8)

)
=

p

n
+ zTr

(
B−1

)
Assume that p

n ⇒ δ(0, 1] −→ how does p grows wrt n

n
pE
[
Tr(A−1)

]
n
p + n

pE[Tr(A−1)
] =

p

n
+ Z

p

n

n

p
Tr(B−1)

SWn−1(Z)

1/γ + SWn−1(Z)
≈ γ + ZγSWn(Z)

S(Z)

1/γ + S(Z)
≈ γ + ZγS(Z).

⇒ S(Z)

1 + γS(Z)
= 1 + ZS(Z) ⇒ 1 + (γ + Z)S(Z) + γZ(S(Z))2 = S(Z)

∴ S(Z) =
1− γ − Z ±

√
(γ + Z − 1)2 − 4γZ

2γZ

Exercise:

Im(S(z)) > 0 =⇒ S(z) =
1− γ − z +

√
(z − γ−)(z − γ+)

2z

where, γ− = (1−√
y)2

γ+ = (1 +
√
y)2
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∴ For t ∈ R.

lim
t↓0

(t+ it) =
1− γ−t

√
(t− γ−) (t− γ+)

2γt

∴ lim
t↓0

Im

(
S(t+ it) =

{√
(t−γ−)(γ+−t)

2γt γ ≤ t ≤ γ+

0, otherwise.

∴ We get, ESDNN
⇒ the distribution with density,

f(t) =
1

2πγt

√
(t− γ−) (γ+ − t); γ−1 ≤ t ≤ γ+

For 0 < γ ≤ 1, the Marchenko-Pastur law is the distribution with density.

f(t) = 1
2πγt

√
(t− γ−) (γ+ − t)

γ− ≤ t ≤ γt
γ− = (1−√

γ)2

γ+ = (1 +
√
γ)2.

Stieltjes transform:

Sµ(z) =

∫
R

1

t− z
µ(dt) =

∫
(t− z)−1µ(dt)

= z−1

∫ (
t

z
− 1

)−1

µ(dt)

= −z−1

∫ (
1− t

z

)−1

µ(dt)

= −z−1

∫ ∞∑
n=1

(
t

z

)n

µ(dt)

= −
∞∑

n=0

z−n−1

∫ ∞

−∞
tnµ(dt)

the nth moment of µ

Exercise: Obtain a recursive relation for the number of non-crossing pair partitions.
Solution:

1 2 3 4 5 6 7 8

Let Cn be the # NCPP of {1, . . . , 2n}
Suppose, 1 is paired with 2i for me i{1, . . . , n}

1 2i

2i− 2 2n− 2i

Cn =

n∑
i=1

Ci−1Cn−i

with C0 = 1,
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Cn =
(2n)!

(n!)(n+ 1)!

Exercise:
Show that n left brackets and n right brackets can be arranged in a “legitimate” way in Cn ways.
Solution:
Sliding a counter from the very left, at no points # of left brackets encountered, should not be less than the #
of right brackets.. Therefore, there is a one-to-one correspondence between all such arrangements and the Dyck
path from (0, 0) to (2n, 0) that never go below the horizontal line,
Weak Convergence:
Definition: For probability measures µ, µ, . . .. . we say µn ⇒ µ if

lim
n→∞

∫
fdµn =

∫
fdµ

for all bounded continuous f : R → R

Ques: The CDF of a probability measure µ is

F (x) = µ((−∞, x]), x ∈ R

Ques: If F, F1, F2, · · · are CDFs of µ, µ1, . . . respectively can weak convergence be defined in terms of Fn ?
Ans: Yes. if limn→∞ Fn(x) = F (x) for every x at which F is continuous, then µn ⇒ µ.

Helly’s selection principle: of F1, F2 . . . are non-decreasing right continuous function, then there exists
a subsequm {Fnu

} of {Fn} ad a nonderearing right continuous f sit. limn→∞ Fnk
(x) = f(x) for every continu-

ity point x of F .

Levy Continuity theorem: If µ, µ, . . . are probability moments, then µn ⇒ µ iff

lim
n→∞

ϕn(t) = ϕ(t) for all t ∈ R

where ϕ1(t), ϕ2(t) are the characteristic function of µ, µ1, µ2 · · · respectively.

How to prove?
Step 1: The characteristic functions ( CHFs ) determine the probability measure (uniqueness).
Step2: ϕn(t) =

∫
eitxµ(dx) the only if part follows from the definition (µn ⇒ µ) ⇒ ϕn(t) → ϕ

Proof of ”if part”
Assume ϕn → ϕ is pointwise.

To show µn ⇒ µ, it suffice to prove every subsequence of {µn} has of further subsequence which converges
weakly to µ.
Fix subsequence {µnk

}
Step 3: Use Helly’s to get a further subsequence of µnk

, {µnk
} which converges weakly to same probability

measure, ν.
Step 4: From step 2, it follows that

ϕnkl
(t) → ϕr(t), k → 1

Step 5: the assumption (*) ensures
ϕ ≡ ϕv

It follows, from step 1 , that µ = v.
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Finite Rank Perturbation

Let {xi,j , 1 ≤ i ≤ j} be a collection of iid RVs with mean µ > 0 and variance 1. Construct a Wigner matrix
WN by,

WN (i, j) =

{
xij , if i ≤ j

xji, if i > j

for all 1 ≤ i, j ≤ N.

Q: How does ESDWN√
N

behave for large N?

Ans:

E
(
Tr
(
WN

k
))

=

N∑
i1,··· ,ik=1

E [WN (i1, i2) · . . .WN (ik, i1)]

Proceeding like in the zero mean case is not possible anymore!

Define, W̃N = WN − µ1N1N
⊤ where, 1N =

 1
...
1


N×1

Thus , W̃N is a Wigner matrix with zero mean entries.

Q: How to use information about W̃N to infer about WN ?

WN = W̃N + µ1N1⊤N︸ ︷︷ ︸
Rank = 1

4.1 Finite-rank Perturbation

Fact: For N ×N Hermitian matrices A and B,

sup
x∈R

|FA(x)− FB(x)|︸ ︷︷ ︸
∥ESDA−ESDB∥

≤ 1

N
Rank(A−B)

where FA and FB are the CDFs of ESDA and ESDB , respectively.
The fact implies, ∥∥ESDWN

− ESDW̃N

∥∥ ≤ 1

N
Rank

(
WN − W̃N

)
=

1

N
Rank

(
µ1N1N

⊤)
=

1

N
→ 0, as N → ∞

Since, ESDW̃N
⇒ µsc where µsc is the semicircle law, it follows that,

E S DWN
⇒ µsc

Q: How does the largest eigenvalue behave?

22
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Ans:

X X X X X X X X X X X

f(x)

Largest eigenvalue of W̃N → 2

X X X X X X X X X X X

f(x)

X

WN = W̃N + µ1N1N
⊤

Convention: For a Hermitian matrix, denote its eigenvalues by λ1(A) ≥ λ2(A) ≥ · · · ≥ λN (A). We want to
study λ1 (WN ). Recall,

WN = W̃N + µ1N1N
⊤

The interlacement result implies, ∣∣λ1 (WN )− λ1

(
µ1N1N

⊤)∣∣ ≤ ∥∥∥W̃N

∥∥∥ (4.1)

where for any N ×N Hermitian matrix A,

∥A∥ = max
1≤i≤N

|λi(A)|

Suppose, A is N ×N real symmetric. Then,

λ1(A) = sup
x∈RN :∥x∥=1

x⊤Ax

Now, x⊤Ax = x⊤PDP⊤x

= y⊤Dy (∥y∥ = 1)

Then, sup
x:∥x∥=1

x⊤Ax = sup
x∈RN :∥x∥=1

x⊤(B + (A−B))x

≤ supx⊤Bx+ | supx⊤(A−B)x|
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Therefore,
λ1(A)− λ1(B) ≤ ∥A−B∥

Thus (4.1) becomes,

|λ1 (WN )−Nµ| ≤
∥∥∥W̃N

∥∥∥
Dividing throughout by N , ∣∣∣∣λ1 (WN )

N
− µ

∣∣∣∣ ≤ 1

N

∥∥∥W̃N

∥∥∥
=

1√
N

·

∥∥∥W̃N

∥∥∥
√
N

=
2√
N∥∥∥W̃N

∥∥∥
√
N

→ 2

∴ As N → ∞,

∣∣∣∣λ1 (WN )

N
− µ

∣∣∣∣ → 0

⇒ λ1 (WN )

N
→ µ

In other words, the bulk of the eigenvalues of WN are of the order
√
N , that is,

ESDWN√
N

⇒ µsc

But the largest eigenvalue is of order N , that is λ1(WN )
N → µ in probability.

Q: How does λ1(WN )
N fluctuate around µ for large N?

In other words, we want to know if
(

λ1(WN )
N − µ

)
can be scaled up to have a non-zero limit.

Ans: Fix N . Let v be the eigenvector of WN corresponding to the largest eigenvalue of Wn, λ1 (WN ) which
we will write as λ1.

That is,
WNv = λ1v

⇒
(
W̃N + µ1N1N

⊤
)
v = λ1v

⇒µ1N
(
1N

⊤v
)︸ ︷︷ ︸

scalar

= λ1v − W̃Nv

⇒µ
(
1N

⊤v
)
1N =

(
λ1I − W̃N

)
v (4.2)

Since the eigenvalues of W̃N are of the order
√
N and λ1 is of order N , λ1IN − W̃N is invertible with high

probability.
The (4.2) implies,

v = µ
(
1N

⊤v
) (

λ1IN − W̃N

)−1

1N

Premultiplying by 1N
⊤, we get

1N
⊤v = µ ·

(
1N

⊤v
)
1N

⊤
(
λ1IN − W̃N

)−1

1N .

⇒ 1 = µ · 1N⊤
(
λ1IN − W̃N

)−1

1N

=
µ

λ1
1N

⊤

(
IN − W̃N

λ1

)−1

1N

Thus,

λ1 = µ · 1N⊤

(
1N − W̃N

λ1

)−1

1N (4.3)
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Fact: If ∥A∥ < 1, then (I −A)−1 =
∑∞

j=0 A
j

(I −A)

∞∑
j=0

Aj =

∞∑
j=0

Aj −
∞∑
j=1

Aj

= I

Applying this fact to (4.3), we get,

λ1 = µ · 1N⊤

 ∞∑
j=0

(
WN

λ1

)j
 1N

= µ

∞∑
j=0

1N
⊤W̃N

j1N

λj
1

= µ · 1N⊤1N +
µ

λ1
1N

⊤W̃N1N + µ

∞∑
j=2

1N
⊤W̃ j

N1N

λj
1

Further,

1N
⊤W̃N1N =

N∑
i,j=1

W̃N (i, j)

=

N∑
i=1

X̃ii + 2
∑

1≤i<j≤N

X̃ij

W̃N (i, j)

= Xi∧j,i∨j − µ

= X̃i∧j,i∨j

Since
{
X̃ij : 1 ≤ i ≤ j

}
is a collection of iid zero mean RVS, Lindeberg’s CLT implies,

1

N
1N

T W̃N1N ⇒ N(0, 2) as N → ∞

Thus, µ
λ1
1N

⊤W̃N1N ⇒ N(0, 2) as N → ∞.∑∞
j=2

1N
⊤W̃ j

N1N

λj
1

is concentrated around its expectation.

Thus, λ1 − E (λ1) ⇒ N(0, 2) as N → ∞
That is, λ1 (WN ) has a Gaussian fluctuation in the limit.

λ1 = Nµ+
µ

λ1
1N

⊤W̃N1N + µ

∞∑
j=2

1N
⊤W̃N1N

λj
1

λ1 − E(λ1) ≈
1

N
1N

⊤W̃N1N ⇒ N(0, 2)

Q: Can the entries of the Wigner-matrix be replaced by independent RVS, having possibly dif-
ferent distributions, with zero mean and variance one, and one still gets the semicircle law in the
limit?

CLT: In the CLT, can the summands have a different distribution so that the limit is still normal?

Lindeberg’s CLT:
Suppose that for n = 1, 2, . . . , n; Xn1 , . . . , Xnn are independent zero mean RVS with,

lim
n→∞

n∑
x=1

Var (Xni
) = σ2 < ∞.

If for all ε > 0,

lim
n→∞

n∑
i=1

E
(
X2

ni
1 (|Xni

| > ε)
)
= 0 ( Lindeberg’s Condition )

then,
n∑

i=1

xni ⇒ N
(
0, σ2

)
as n → ∞
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Usual CLT: Suppose X1, X2, . . . are iid zero mean RVs with variance σ2. For n ≥ 1, let

Xni
=

1√
n
Xi, i = 1, . . . , n

It’s immediate that Xn1
, . . . , Xnn are independent zero mean RVs.

Furthermore,
n∑

i=1

Var (Xni
) =

n∑
i=1

Var

(
Xi√
n

)

=
1

n

n∑
i=1

Var (Xi)

= σ2

To check the Lindeberg condition, fix ε > 0 and observe,

n∑
i=1

E
(
X2

ni
1 (|Xni

| > 2)
)
=

n∑
i=1

E

(
Xi

2

n
1
(
|Xi| >

√
nε
))

= E
(
X2

i · 1
(
|x1| >

√
nε
))

→ 0 as n → ∞ (since X1
d
= X2

d
= · · · d= Xn)

Now,

Sn
d
≈

n∑
i=1

Gni

Hence,

Sn ≈
d∑

i=1

Gni ∼ N
(
0, σ2

n

)
σ2
n = Var (Sn)

Proof: Let

Sn =

n∑
i=1

Xni
, n ≥ 1,

σ2
ni

= Var (xni) , i = 1, . . . , n

and σ2
n =

n∑
i=1

σ2
i

Let Gni : 1 ≤ i ≤ n be a collection of independent RVS, which is independent of Xni
as well, with Gni ∼

N
(
0, σ2

ni

)
.

If we can show that, Sn
d
≈
∑n

i=1 Gni, then the proof would follow because,
∑n

i=1 Gni ∼ N
(
0, σ2

n

)
and σ2

n → σ2

by assumption.

We shall show that for all bounded function f : R → R which is thrice differentiable and its first three
derivatives are bounded,

lim
n→∞

∣∣∣∣∣E[f (Sn)]− E[f

(
n∑

i=1

Gni

)
]

∣∣∣∣∣ = 0

The above would imply that,

lim
n→∞

E [f (Sn)] = E[f(Z)] where z ∼ N
(
0, σ2

)
and hence it would follow that,

Sn ⇒ z

Proof:
Fix f : R → R as above. Taylor’s theorem implies,

f (Sn) = f

(
Xn1 +

n∑
i=2

Xni

)
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⇒ f (Sn) = f

(
n∑

i=2

Xni

)
+Xni

f ′

(
n∑

i=2

Xni

)
+

1

2
X2

n1
f ′′

(
n∑

i=2

Xni

)
+

1

3!
X2

n1
f ′′′(ξ) for some ξ

Thus,

E(f(Sn))− E(f(

n∑
i=2

Xni)) = E(Xn1f
′(

n∑
i=2

Xni)) +
1

2
σm

2E(f ′′(

n∑
i=2

Xni)) +O(E|Xni |3)

⇒f(Sn) = f(

n∑
i=2

Xni
) +Xn1

f ′(

n∑
i=2

Xni
) +

1

2
Xn1

2f ′′(ξ′)

⇒

∣∣∣∣∣f(Sn)− f(

n∑
i=2

Xni)

∣∣∣∣∣ ≤ Xn1f
′(

n∑
i=2

Xni) +
1

2
Xn1

2f ′′(ξ′)

⇒

∣∣∣∣∣E
[
f(Sn)− f(

n∑
i=2

Xni
)− 1

2
σn1

2E[f ′′()]

]∣∣∣∣∣ ≤ kE
(
Xn1

2 ∧ |Xn1
|3
)

⇒

∣∣∣∣∣E
[
f

(
Gn1

+

n∑
i=2

Xni

)
− f

(
n∑

i=2

Xni

)]∣∣∣∣∣ ≤ kE
(
|Gn1

|3
)
= cσn1

2

Combine the two inequalities to get,∣∣∣∣∣E (f (Sn))− E

(
f

(
Gm +

m∑
i=2

Xni

))∣∣∣∣∣ ≤ kE
(
X2

n1
∧ |Xn1 |

3
)
+ Cσ3

n1

Replacing Xni
by Gni

, one at a time, yields,∣∣∣∣∣E (f (Sn))− E

(
f

(
n∑

i=1

Gni

))∣∣∣∣∣ ≤ k

n∑
i=1

(
E
(
X2

ni
∧ |Xni

|3
)
+ c

n∑
i=1

σ3
ni

Fix ε > 0,

n∑
i=1

E
(
Xni

2 ∧ |Xni
|3
)
=

n∑
i=1

E
(
Xni

2 ∧ |Xni
|3
)
1 (|Xni

| ≤ ε) +

n∑
i=1

E
(
Xni

2 ∧ |Xni
|3
)
1 (|Xni

| > ε)

⇒
n∑

i=1

E
[
Xni

2 ∧ |Xni
|3 1 (Xni

|≤ ε)
]
≤

n∑
i=1

E |Xni
|3︸ ︷︷ ︸

≤εXni

1 (|Xni
| ≤ ε) ≤ ε

n∑
i=1

E
(
X2

ni

)
= εσ2

n → εσ2

⇒
n∑

i=1

E
[(

Xni

2 ∧ |Xni
|3
)
1 (|Xni

| > ε)
]
≤

n∑
i=1

ϵ
(
X2

ni
+ 1 (|Xni

| > ε)
)
→ 0 (by Lindebarg condition)

To complete the proof, we need to show,

lim
n→∞

n∑
i=1

σ3
ni

= 0

Fix ε > 0. Then

n∑
i=1

σ3
ni

=

n∑
i=1

σni
· σ2

ni
≤
(

max
1≤i≤n

σni

) n∑
j=1

σnj

2

︸ ︷︷ ︸
σ2

If we can show that,

lim
n→∞

max
1≤i≤n

σni

2 = 0

then we are done.
Proof:
Fix ε > 0,

σ2
ni

=E
(
Xni

2
)

=E
(
Xni

2 · 1 (|Xni
| ≤ ε)

)
+ E

(
Xni

2 · 1 (|Xni
| > ε)

)
≤ε2 + ϵ

(
Xni

21 · (|Xni | > ε)
)
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Therefore,
max
1≤1≤n

σ2
ni

≤ ε2 + max
2≤i≤n

E (Xni
· 1 (|Xni

| > ε))

≤ ε2 +

n∑
i=1

E
(
x2
ni + (|xni| > ε)

)
︸ ︷︷ ︸

0

The last line follows from Lindeberg condition. Hence we get the complete proof. ■

In Random Matrices, the Lindeberg principle can be applied in a similar way.

S(z) =
1

N
E
[
Tr (WN − zIN )

−1
]

where WN is an N ×N Wigner matrix (with entries having zero mean & variance one). The entries of WN can
be ”replaced” by standard normal RVs, one by one, as Lindeberg CLT.

It can be shown that if (using [WN (i, j) = Xi∧j,ivj ])

lim
n→∞

N−2
∑

1≤i≤j≤N

E
(
X2

ij · 1
(
|Xij | > ε

√
N
))

= 0 (Pastur’s Condition)

then,

1

N
E

[[
Tr
(
(WN − zIN )

−1
)]

− 1

N
E

[
Tr

((
GN√
N

− zIN

)−1
]

→ 0 as N → ∞

where GN is an N ×N Wigner matrix with entries for standard normal.

Thus it would follow that under Pastur’s condition,

ESDWN√
N

⇒ µsc.


