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Chapter 1

Basics of Random Matrices

Ginibre Ensemble: A random matrix is a matrix whose entries are random variables. Let {X;;; 4,j € N} be
a collection of i.i.d. standard normal random variables. Let Gx be an N x N matrix with

Gy (i, ) = Xy , 1<4,j<N

This random matrix is called a Ginibre ensemble.

Wigner Matrix: Define Wy by
Wi (i,7) = Xinjivj 1<4,5<N

Wy is called Wigner matrix. The Wigner matrix is Hermitian while Ginibre ensemble is not. The upper triangle
entries of the Wigner matrix will be i.i.d.

X1 X2 -0 X
X2 Xoo - Xop
Xln X2n X'rm

Defn. Given p € R? and a p X p n.n.d(non-negative definite) matrix ¥, we say a p-variate random vector X,
follows N, (i, X) if YA € RP
ATX ~ N (AT, ATEN)

Convention. Elements of R? are to be thought of as a p x 1 vectors.

11 Ti12 ot Tin
T12 X2 . T2p
Tin T2n *°° Tnn

Wishart Matrix: Suppose X1, X5 ..., X, are iid from N,(y,%). Then 3 = IS (X =) (X, — ,u)T is

1=

an estimator of . The matrix 3 is called the Wishart matrix

Defn. Suppose p, i1, fi2, ... are probability measures on R. We say u, = u, that is, u, converges to u
weakly, if

lim [ fdun = / fdy

n—oo

for every bounded continuous function f: R — R

Defn. Given any probability measure v on R, there exists a random variable X such that,
P(X € A) =v(A) for all A.
We shall say “X has distribution v”.

Fact. If X has distribution v, then

Blf(e)) = [ fav= [ faids



For random variables X1, Xo,..., X,
X, = X simply means

lim E[f (zn)] = E[f(z)]

n—oo

for any bounded continuous f:R — R.

Fact. (Method of Moment) For Random variables (RV;) X, X3, X;,... having finite moments, assume
lim E[X}] =F[Xx*], VkeN.
n—oo

Then X,, = X only if the moments ”determine” the distribution X.

Fact. Suppose v, v, s ... are probability measures with finite moments such that

n—oo

lim [ 2*v,(dr) = /xku(da:), ke N.

Furthermore, assume v is determined by its moments. Then v,, = v,n — co.
A measure v is determined by its moments if whenever

/xky(dx) = /xku(dx) Vk=1,2,... then

V= .

Fact. (Carleman’s condition) Suppose {my};- , is the moment sequence of a probability measure p. If

oo

Z —1/2k _
ka =0

k=1

then {my} determines pu.

Fact. If 4 is a probability measure such that
/em,u(dx) < oo forallt e (—1,1)

for some € > 0, then p has finite moments which determines . [mgf is finite in the neighborhood of y ]
Corollary. If p is a compactly supported probability measure, then p is determined by its moments.
Exercise. Show that the standard normal distribution is determined by its moments.

Exercise. (Needs Gamma integrals) Show that for k = 1,2,3,. ..

/°° $ke*I2/2d$ _ W, if k is even
oo V2m 0, if k is odd.

Example, for k = 4.

o0 2
e " Pdy

—

= Let, y = 22 /2

= 2/ ahe=" 2y cody = zdx
Ooo , Again, 2y = z?

=2 2y)3/2e7vd ,
/O (2y) Y (2y)3/2 — 3

Gamma integral
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Central limit theorem: Suppose X, Xs, ... are i.i.d. zero mean RV s with finite variance 0. Then as n — oo
1

vn

Proof: (under the additional assumption that all moments of X; are finite) Let, S, = X1 + Xo + ... + X,

clearly, E[S,] = 0 and E [S2] = Var[S,] = >/, Var (X;) = n Since X1, X5, X3,---,X,, are i.i.d. RVs
(Without loss of generality and 0% = 1) We want to compute,

(X1+Xo+--+X,) = Z, where Z ~ N (0,07)

E[S)|=E (znjx>4

élq
(]
(]
WE
M=
>
ke
o
>

If 4, 4, k, 1 are distinct, then
E(X:X; X X)) =F[X;)E[X;]E[Xs) E[X;] =0
In fact, whenever one of i, j, k, [ is “isolated”, that is, it is distinct from the other three,

E[X;X;X,X)] =0

In other words, E [X;X; X, X;] = 0 unless one of the following holds
(Mi=j=k=1 () (i=j)#(k=1)
() (i=k)# G =1 (IV) (i=0)#(G=k)

Continuing from 1.1, we write

E(S;) =nE (X{) +3n(n—1)

SN 1
E (\/i) :—ZE[SfL}—>3ann—>oo
n n

To generalize: Let k be a positive even integer. As before,

E[Si] =E (g)()k

I
=
N
E
>

11,02,..,0 =1

Given, (i1, ...ix) € {1,...,n}*
E[X;, ...X;, ] = 0if there is any ”isolated” index i1,is ...,
That is there exists a partition Py, Py, ..., P of {1,...,k} such that
#P; > 2 (#P; means cardinality of P;)
P1UP2U...UP1 2{172,714,'} and P17P2,...,1:)l aredisjoint
iy = iy & u,v € P; for some j (1.2)

Thus,

E(SH= Y > E[X1,... Xz

PPy (i, i) €1, m}
such that (*x)holds

=Y nn-1)---(n—1+1E (Xf*Pl)E(X#PZ)--.E(X#PZ)



Given the partition Pi,..., P of {1,...,k} with
#P; >2, 1<k/2

Equally holds if and only if #P; = 2 that is (P, P»,--- , F}) is a pairing of {1,2,--- ,k}
Thus,
E[Sk] = Z n(n71)~~(n7k/2+1)+0(nk/z)

Py,Py...,Py 2
is a pairing of {1,...,k}

zn(n—l)-~-(n—k/2—|—1)2k/2](€]i/2)!+0(nk/2>

Therefore,
k!

k2 ak] k/2
nhHH;On /E[Sn]—m—i—O(n/) for an even k

Note: It is easier to show that
lim n~*?F [SF] = 0if k is odd

n—oo

Therefore, we showed that,

g \*
lim E|(—F%) | =B (2"
e (ﬁ ) (2%
for k =1,2,..., where Z follows standard normal distribution. The method of moment completes the proof.
For an Hermitian matrix A of size N x N enumerate its eigenvalues in the ascending order by A;(A4), ..., An(4).

Defn. For an N x N random matrix W, define its ”empirical spectral distribution” or ES Dy, by the measure
LN
ESDw(4) = Zl dx,(wy(A) for all A CR

1, ifzed

Here 3:(4) = {0 if 2 £ A

In other word,
ESDw (A) = %Z 1L (\(W) € A)
:%#{iilﬁiSM Ni(W) € A}
Defn. The expected empirical spectral distribution or EESD of W is

EESDw(A) =F (ESDw(A))

:E(l zle()\i(w)eA)>

_ 1
-

=|

M=

P()\z(w) S A)

Il
-

In other words, EESDy,(A) is nothing but the average of the distributions of A\ (w) ..., A, (w)
In measure theory language,

N
1
[ t@EEsD. ) = > Bl Ou(w)]
Let, {X;; : 1 <i < j} beiid RV's with all moments finite. Define a Wigner matrix Wy by

Xij, i<

W (i, ) =
n (i J) {in, ifi>j
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Our goal is to use the Method of Moment for studying FES Dy,
The first moment of EES Dy,

00 N
/ tEESDy, = % > EN(WN)
i=1

— 00

The second moment of EES Dy,

/ 2?EES Dy, (dz)

1 N
- ~E <; /\?(WN)> TT(TJ/‘V/fv)
N
= %E <Z Ai(W}"V)> ) ; e
) i=1 N N
Clew o
= E ;;(WN(ZJ)) => > (Wn(i,j)?
o i=1 j=1
= WO'Q = No?

where 02 = Var(X;;) = E(X;;)?

As No? blows up, we need to scale to get a limit. To get a “finite limit”, we scale Wy by v N. Look
at,

1
PSPy =7 2 o)
1 N
= NZ&L%N)

and, EESDw, = / 2?*ESDwy (dz)
VN oo VN

Exercise. Check that,

(oo}
/ t?EESDwy (dz) = o*
— 0 VN



Theorem: (Wigner’s Surmise) As N — oo, EESDwy = s
N

where p . is the probability measure, whose density is

LA —z2 —2< <2
fla) =427 .
0, Otherwise

Often . is called the semi-circle distribution.

Fourth Moment:
If Pis an N x N matrix, then

N
Pk, )= > Pliyi1)P(i1,i2) - Plir-1,5)

01,02, yik—1=1

/OO ' EESDuw, (de) = ;;iE [A? (\W//%)]

- i=1

1 N
= N3 ZE (A (W)

= 5 S E ()]

N
1
=3 E (E [ Xing,iviXink, jvieXkatkviXiniivi])
i,5,k, =1

= 0 if one of the i, j, k, [ is isolated

(From the experiment in Central Limit Theory) We know, we need to consider pairing. That is one of the
following must hold:
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Casel: {i,j} = {j,k} and {k,l} = {l,i}
Putting i = [ ensures both constraints(non-crossing). Approximately O(N?3) many (i, ], k,) satisfy this.

Case2: {i,j} ={k,1} and {j,k} = {l,i}
At most O(N?) choices.

Case3: {i,j} ={l,i} and {j, k} = {k,{}
Since j = [ satisfies both constraints, there are O(N?3) choices.

Therefore ,
) 1 4
nh_)n;O WE [TT‘(WN)] =2

Case 1: ( ) [ ]— valid

Xinjivi Xink,jvk XEAlLkvi Xiniivi
Case 2: ( [ ) ]|— not valid

Xingivj Xink,jvi XinlLkvi Xiniivi
Case 3: ( [ ] )—valid

Xinjivj Xink,jvk XiAlLkvi Xiniivi

-




1.1. SUPPLEMENTARY MATERIAL

1.1 Supplementary Material

Gamma and Beta Integral
Defn: For o >0, T(a) = [; e *2* 'dz (Euler’s Gamma function)

1
Bla,b) = / %711 — 2)*"'dx where a > 0,b >0 (Beta function)
0

Theorem: For a > 0,T'(a + 1) = oI («)
Proof: Integration by parts to get

P(a+1) z/ e x%dx
0

o0
= (e™ ") —/ (—e ")z tdx
0

Since I'(1) = 1, we get

Exercise: Calculate I'(3)

Work:
1 e 1 y?
1"(5) = /o e xz ldr let, z = 0}
jo%s) 2 71/2
= / eV’ /2 (y) ydy = dx = ydy
O 2
e 1
= \/5/ e_yz/Qdy =2. 5\/2%
0
=/

Exercise: Calculate T (2’“2—“'1) for ke N
Soln: Write %TH = %T_l +1

2%+1, 2k—1_ 2k—1
I'( )= I'( )
2 2 2

2k—12k-3 11
=5 o 'R
2k—12k—-3 1
=== ...5_\/;
B (2k)!
2k (24 .. .Qk)'ﬁ
(2k)!

=gV
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Exercise: Calculate the even moments of standard normal.
Soln: Fix k € R. Then,

22

[e%s) e~ 5

E[X %] :/ i ——
o V2T

2 [* . 2

= \/>/ 6_72$2kdx let, y = r

2

\/>/ dy = dy = xdx

2ht1 g

- p
y y
ﬁo
_ 2k1“ 2k +1
RV 2

k(2k)!
ﬁ(z;kle)!ﬁ

~(2k)!
T 2kE!

Thus, the 2k-th moment of the standard normal is %

Fact: Fora>0andb>0
I'(a)I'(b)

I'(a+b)

Exercise: Calculate the even moments of the semicircle law ( Note: Odd moments vanish)

Soln: For ke N )
1
E [X%] = 2—/ 22k \/4 — 22dx let, 22 = 4y
T J-2

1 1 2k—1
:7/( ) VA—dy-2dy = 2zdx = Ady
0

™

B(a,b) =

22k+1 2k—1
= / y r (1—y) Y 2dy = zdr = 2dy
0

22k+1 2% 1
_ . B( + 3)

T
22k+1 . (2k+1) (%)
T I'(k+2)
92k+1 . %ﬁ%\/}
7T (k+1)!
(2R
ACES




Chapter 2

Wigner’s Semicircle Law

Theorem: (Wick’s formula) If (G, ...,G, ) are Ni(O,X), then

ZweGk H(u’v)eﬂ E(G,G,), if k is even

BG,... G = {o if k odd

For any even number k, P(k) denotes the set of pair partitions of {1,...,k}
For example, for k = 4,
P4) ={{(1,2),3,9)},{(1,3), (2,9}, {(1,4),(2,3)}}
Convention: Any element of P(2k) will be denoted by
{(u1,v1), ..., (ug, o)} where u; < ... <uy and u; <wvj for j=1...k

Proof: Denote G = (G1,...,Gi). Let ZMW, Z®?) . Z, be iid. copies of G. We know Gaussians are
symmetric. Symmetry implies,

(=Gi,y...,—Gr) £ (G,...,Gy)
ifkisodd, —Gy...GrL2Gy..., Gy
E(Gy,...,Gk) =0
Now assume WLOG; k = 2m for any m > 1.
Properties of multivariate normal (sum of i.i.d. normal is normal) imply,

n~1/2 (Z(l) + 23 +~~~+Z(”)) 2L G for all n >1

Fix n. The above implies,

2m 2m n
[Tc 2]n 2y 2" ZW = (zW .z
j=1 j=1 i=1
2m n
S [y
j=1i=1

n n n 2m )
S IDINED U | K
i1=112=1 iom=1j=1
2m

—pm Z H Zj(f(j))

fA1,....2m}—{1,...,n} j=1

Thus,
2m 2m )
j=1 f{1,....2n)—{1,....,n} Jj=1

Recall, Zi(f(i)) and Z;f(j)) are independent if f(i) # f(j).
Suppose, i € Range(f), if #{j : f(j) =i} is odd then,

2m
E Hzfm =0
j=1

11
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(we proved the for the case k = odd)

Therefore,
2m 2m
j=1 f{1,....2m}—{1,...,n} Jj=1

such that #{j:f(j)=1} is even for all 4
- If f satisfies the above, then
4 Range (f) <m

The number of functions f : {1,...,2m} — {1,...,n} with #Range(f) <m —1is O(n™1)
As n — oo,

2m 2m
~ET]G | =00)+n™ > E| ]2/
j=1 f{1,....2m}—{1,...,n} Jj=1
such that #{j:f(j)=14} is even for all 4
2m )
=0 +n" " Y > E( ]2/
TEP(2m) f{1,....2m}—{1,...,n} Jj=1

such that f(u)=f(v)when(u,v)en

=0(M)+n™ Y nm-1)...n-m+1) [[ E(G.G.)

TEP(2m) (u,v)Em

Asn — oo,
2m
ElTIG | = > ]I E@G.G)
Jj=1 we€P(2m) (u,v)Em

This completes the proof of Wick’s formula. B

Defn: Suppose X and Y are iid from N(0,1). Define Z = X + iY where i = /=1 then Z is said to fol-
low standard CN (complex normal distribution).

Exercise: Calculate F(Z), E(Z?) and E(|Z|?).

Soln:
E(Z)=0and E(Z*) =E(X?-Y?+2iXY) =0

E(|Z)=E(X*+Y?) =1
Defn: Let ( Z;; : 1 <i<j) beiid RV, from standard CN. Define a matrix Wy by
Zi, ifi < j
W (i,7) = < Zij, if i > j here, Z = complex conjugate of Z
VER(Z:), if i = j

Then the random matrix Wy is called a Gaussian Orthogonal Ensemble (GOE).
Exercise: Check that Wy is Hermitian, that is Wy = WJ;. In particular, eigen values of Wy, are real.

Exercise: For 1 <i,j,k,1 < N, show that

1, ifi=1landj=k

E(Wn (i, )W (k1)) = { 0, otherwise

Denote
1, u=v

o(u,v) =
(u,v) {O, otherwise.

Therefore,
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For fixed k = 1,2,...,

/_]:O a:kEESDWT%(dx) = zlvﬁ_v;E {)\f (V\/V%ﬂ

N
1
= NI+k/2 ZE (AF (W)
i=1
1
= N1tk/2

N
1 . . . .
= N2 Z Wi (i1,i2) - W (ik—1,0x) W (ig,%1)

E(Tr (Wy))

11,82, .,0 =1

k times.
1 N
= T > E(Wy (iv,iz) ... Wi (ik, 1))
i1,..ip=1

If k is odd, then this is zero. Assume k is even positive number, then Wick’s formula implies that the above
equals,

N
1 o o
N1+k/2 Z Z H E (W (ius iut1) W (iv; iv41)) -

11,12, ik =1 1€ P(k) (u,v)ET

For the moment, fix 7 € P(k). Then,

H E (WN (iuviu-&-l) Wn (ivaiv+1)) = H J(iuaiv+1)5(iu+1aiv)

(u,v)€™ (u,v)em
Denote, k = 2m and m = {(u,v1) ..., (tm, vm)} following the convention laid down in the beginning. Although
7 is a pair partition, it can be thought of a function from {1,...,2m} — {1,...,2m} with

(z) = {'Uj, if = u; for some j

u;, if x = v; for some j
Define v : {1,..,2m} — {1,...,2n} by

L g4, ifj#£2m
7(3)_{ 1, ifj=2m
Thus for (u,v) € 7
d (Z.uv i11+1) =9 (Z.uv i'wr(u))
and ¢ (iu+1,iv) =4 (Z‘U,Z',yﬂ.(@))

Hence,
2m . . .
. . . . 1, if i; = y7(4),Vy
67’7177”0 5Zu yly) = 51'77, (i = ’ J ’
j|:|1 ( +1) ( +1 ) Jl;[l (] ¥ (J)) {0,0therwise

Recall that,

N 2m
> 166 ivm0) (2.1)

11,82, =1 j=1

Exercise: Show that, any permutation is the composition of disjoint cycles.
Suppose, 7 ={s1,...,Sm} where S1,...,s,, are disjoint cycles.
Equation (2.1) holds if and only if, ¢, = i, for all u,v € S;

If #(ym) denotes the numbers of cycles in é7 then

N
Z H 6(iuaiv+l)5(iu+1aiv) = N#(’Yﬂ)

i1, t2m =1 (u,v)em

In this exercise #(ym) = m. Thus,

0o
/ me EESDM(d?L’) — Z N#(’Yﬂ')—l—m
- VN TEP(2n)



14 CHAPTER 2. WIGNER’S SEMICIRCLE LAW

We prove the following theorem, Genus Expansion for m, N > 1. Now as N — oo what happens?
Theorem: For all 7 € P(2 m),

Hm) <m+1 (2:2)
Equality holds if and only if 7 is a non-crossing pair partition, that is, there do not exist

u<v<w<zwith (u,w),(v,2) en

Example of non-crossing pair partition.

1 2 3 4 ) 6

Example of crossing pair partition.

Lemma: Suppose, = {(u,v1),...,(Um,vm)}and {w1,...,wy,} is a cycle of ym. If,
wy = min w; (2.3)

Then, Wy € {1,u1 +1,...,up, + 1}. Thus 2.2 holds. [number of cycles can’t exceed m + 1 |

Trivially, wy = v7 (wy,). There are 2 cases which are:
Case 1:  w,, = u; for some j
Case 2: w,, = v; for some j

In case 1:
v, if v; #2m
wi = (W) =y () = ¢
1, if v; =2m
That, wi; = v;41 is impossible because then 2.3 would be violated. Thus in this case, necessarily v; = 2m and
hence wy =1

In case 2:  wy =7 (W) =77 (vj) = v (u;) = tj+1
Thus the claim of the lemma holds.

At least one of the numbers is paired to the next number.
~vm(3) = v(2) = singleton cycle

— removing one non-crossing pair we get again another non-crossing pair partition.
— recursively keep removing pairs.
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Lemma: Suppose, w € P(2m) and there exists € {2,3,...,2m} such that, (x —1,2) € 7 (pairing of
consecutive numbers) Then {z} — singleton cycle in vy

Furthermore, 7/ =7 — {(z — 4, 2)}

7' is a pairing of {1,...,2m}\{z — 1,2} and~’ is the cyclic permutation of defined in the obvious way, then

# (') =#(ym) -1

Proof of the theorem: #(y7m) < m + 1 has been established. Suppose, 7 is a non-crossing pair partition.
Then there exists x € {2,...,2m} such that (z — 1,z) € 7. By the previous lemma, removal of (x — 1, z) from
m means, we lose one cycle from ym. Recursively by deleting (m — 1) pairs and hence losing (m — 1) cycles, we
end up with {1,2}. This pair partition pre-multiplied with v has 2 cycles. This shows,

4om) =m+1 @)=z
m(x)=xz—1

For the converse, assume #(y7m) = m+1. Assume for the sake of contradiction that 7 is a crossing-pair partition.
If two consecutive elements in 7, they can be deleted using the previous lemma at the expense of one cycle in
~7. Inductively, we eventually get 7/ € P(2k) for some k with #(+'n’) = k 4 1 such that there does not exist
any ¢ € {2,...,2k} with (x —1,2) € 7’ Since, #(y'7") = k + 1, at least two of them are singleton. Say, {y} and
{z}. Then, let x =y V 2. Thus —2 < x < 2 and since {z} is a cycle in 7'7’, it follows that (x — 1,2) € .

This contradiction proves that 7 is a non-crossing partition.Hl

Combining this theorem with Genus expansion, we get

3 N#Em-m)

lim [ 2*™ ESDwy (dz) = #{number of non-crossing pairing of {1,...,2m}}
N—o0 VN

Lemma: The number of non-crossing pairings of {1,2,...,2 m} equals C,, = % We call C,, the

m-th Catalan number.

Proof:

1 2 3 4 5 6 7 8
| | | | |
I I I [ I [ I I
1 2 3 4 5 6 7 8
As evident from the above diagram,
the number of non-crossing pair partitions of {1,2,...,2 m} (2.4)

= the number of Dyck paths from (0,0) to (0,2m) which never goes below the horizontal axis.
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The ‘Reflection principle’ implies that

#Dyck paths from (0,0) to (2n,0) that touch —1
= # of Dyck paths from (0, —2) to (2m,0)

_ (m?ml).

(by (2.4) becomes) = (2m) - ( m )

m m—1
~ (2m)! (2m)!
T omm! (m—1)!(m+1)!
B (2m)!
= (mtl-m) e

Exercise: Prove this by induction on m.

From yesterday’s lecture,

2
1 2m)!
/ 22— /4 — 12dx = 7( m)
2w m!

_9 .(m + 1)'
Everything put together imply,

o0 oo
lim ¥ EESD w, (dz) = / 2¥ g (dx)  for all k.

N—o00 —50 VN — 00

Since the semicircle law is compactly supported, it is determined by its moments. The method of moment
proves the following:
As N — oo,
EEDwy = pisc
VN

where Wy is the N x N, GOE(Gaussian Orthogonal Ensemble)

Universality:
If Wy is of Wigner matrix with iid entries from a zero mean unit variance distribution, then (2.4) holds



Chapter 3

Wishart Matrices

Theorem:
For z € C*

Sespa(z) = 1T, (4 21x) ")

Let, X,,,...,X,, beild RVs from N, (0,1, ). The subscript “n” will be suppressed.
Define Wy = % S, XX, is a p x p Wishart Matrix (Sample equivalent matrix).

Fix z¢€& C*t. Then

Sesoy(2) = T [(ow = 20p) 7
<; Z X, X! — z1p> 11
=y [(Z XX — nzlp)_l}

p
n—1 -1
(Z XX, —nzl, + X, X, )
i=1

1
=-"Tr

3

n
=-—"Tr
p

Denote,

B= (Z X, X! - nzfp>
i=p

n—1
A= Z X, XI' —nzI,
i=1

S B=A+X,X
Thus, SESDN(E) = %TT’ (Bil) .

17
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If C is any n X n invertible matrix, then
(c+ay")=(T+ay'e")c
cletay) Tt =N (T4 xch_l)_l
=c! (I —ayle 4 (xch_l)Q — (mch_1)3 4. )
=c'T—ay et 4azyTcltavel+-0)
—
scalar
=ct(I—ay e+ (yc ') (zy'ct) - (chflz)z zy ¢t
=¢ ! (I —qy'et (1 —(y'eta) + (chfla:)Q +oe0))

1
-1 Ta—1
= I
¢ ( e 1+ch—1x)

1y T o1
4 cwy'c

14yl ln

(check that this indeed is the inverse)

whenever y e ta # —1.

T —1_)\2
Telp— (e te)” 4Tl
1+yTelz = 14+yTcelz”

Calculate: y' (c+ chT)_1 r=y

Back to the proof:
SXTBTIX, = X, (A+ X, X)X,
XrA-1x,
T I+ XTAIX,
_ B(X]A7'X,)
T 1+ E(X]ATIX,)

*We could have,
Ap= Y XX —nzI,
ie{l,...,n}
B(X[ AL X))
1+ B(XTA X))

XTA X, £ XTAT X,

XIB71Xx; ~

Suppose, Z ~ N,(0,1)
Assume, A is pzp real symmetric matrix

Z'NZ,AN=PDPT
Z'NZ=Z"PDP'Z
= (P"2)" D (P 2)
Since, D = diag(A1,...,Ap)

U1
and PTZ=| : | ~N(0,1,)

p
ZVNZ =Y NV?

i=1
E(Z"ANZ) =) NE(V?) =) X =Tr(A)
Var (Z' A Z) = 2527 = 2Tr (A?)

X .. Taking any X;Blek for k=1,...n,
we get,



E(XTA'X,)
11 E(X]A1X,)

1 n
~ § X, B~1X,.
n
k=1

E(X{A'X,) =E4[E(XTA™'X,) | 4]
= BT (47)]

We know,
B=A+X,X,
= Z XX, —nz2l, + XX
=1
=Y X;X;' = B+nzl,

Thus,
E[Tr(A™Y)] "
— L~ XI'B71Xx
1+ E[Tr(A1)] k b

k=1

> =

1 n
== ;Tr (X B Xy)

= ST (BTN
k=1

= % Tr (B~! (B + nzls))

_D -1
fnJrzTr(B )

Assume that £ = 6(0,1] — how does p grows wrt n

+ 72 By
np

B [Tr(A™)] P
14 LE[T(AD)  n

ViR AR
P!
S(2) 2
= TS(Z) =14+2812) =1+(H+2)S(2)+~Z(S(2))* =8(2)
" 8(Z) = l-v-2+\/(y+Z -1 -4Z
h 27
Exercise:
In(S(2)) > 0 — §(z) = l—y—2z+ \/(222* =)z — 7+)

where, - = (1—/y)*

7= (14 VD)

19



20 CHAPTER 3. WISHART MATRICES

. For te€R.
1—y_ty/(t—v_) (t —
lim(t + it) = — V=) (t—5)
tho 2t
(t=7=)(v+—1)
limIy, [ SE4dt) =< 29t y<t <4
o 0, otherwise.
.. We get, ESDy,, = the distribution with density,
f(t) = = (t ) ( t)~ <t <
o 2wyt Y-+ V-1 S0 Y+

For 0 < v < 1, the Marchenko-Pastur law is the distribution with density.

Ft) = g/t =) (74 — 1)

Y- <t<y
- =(1-7)?
4 =1+

Stieltjes transform:

==y ! /OO " u(dt)

n=0 -0

the nth moment of p

Exercise: Obtain a recursive relation for the number of non-crossing pair partitions.
Solution:

Let C,, be the # NCPP of {1,...,2n}
Suppose, 1 is paired with 2i for me i{1,...,n}

2 —2 2n — 23

—@
]
S

Cn = i Ciflcnfi
i=1

with C(J == 1,
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C, = (2n)!
(n)(n+ 1)!

Exercise:

Show that n left brackets and n right brackets can be arranged in a “legitimate” way in C,, ways.

Solution:

Sliding a counter from the very left, at no points # of left brackets encountered, should not be less than the #
of right brackets.. Therefore, there is a one-to-one correspondence between all such arrangements and the Dyck
path from (0,0) to (2n,0) that never go below the horizontal line,

Weak Convergence:

Definition: For probability measures p, f,.... . we say pn, = p if

lim [ fdun = / fu

n—oo
for all bounded continuous f: R — R

Ques: The CDF of a probability measure p is

Ques: If F,Fy, Fy,--- are CDF's of u, u1, ... respectively can weak convergence be defined in terms of F,, 7
Ans: Yes. if lim, o Fy,(x) = F(z) for every x at which F is continuous, then u, = u.

Helly’s selection principle: of Fi, Fy... are non-decreasing right continuous function, then there exists
a subsequm {F,, } of {F,} ad a nonderearing right continuous f sit. lim,_,o Fy, (z) = f(x) for every continu-
ity point = of F.

Levy Continuity theorem: If yu, u,... are probability moments, then pu, = p iff

lim ¢,(t) = ¢(t) for all t € R

n—oo
where ¢1(t), p2(t) are the characteristic function of p, u1, pa - - - respectively.

How to prove?
Step 1: The characteristic functions ( CHF, ) determine the probability measure (uniqueness).
Step2: ¢, (t) = [ €"u(dx) the only if part follows from the definition (u, = u) = ¢n(t) — ¢

Proof of ”if part”
Assume ¢,, — ¢ is pointwise.
To show p, = pu, it suffice to prove every subsequence of {u,} has of further subsequence which converges
weakly to u.
Fix subsequence {py, }
Step 3: Use Helly’s to get a further subsequence of pip, , {fin, } Which converges weakly to same probability
measure, V.
Step 4: From step 2, it follows that

Gny, (1) = @r(t), k—1
Step 5: the assumption (*) ensures
¢ = by
It follows, from step 1 , that u = v.



Chapter 4

Finite Rank Perturbation

Let {z;;,1 <1 < j} be a collection of iid RVs with mean p > 0 and variance 1. Construct a Wigner matrix
WN b}’»
. xi, ifi<j
WN<Z7]) = Y e . .
T4, ifi>j
forall 1 <i,5 < N.

Q: How does ESDw, behave for large N?

VN
Ans:
N

E(Tr(Wx*) = Y. EWny(ir,i2) ... W (ix, i1)]

by, yip=1

Proceeding like in the zero mean case is not possible anymore!

1
Deﬁne, WN = WN — MlNlNT Where, 1N =

~ 1 Nx1
Thus , Wy is a Wigner matrix with zero mean entries.

Q: How to use information about Wy to infer about Wy ?
Wy = ﬁ/Tv + pln 1}
———
Rank =1
4.1 Finite-rank Perturbation

Fact: For N x N Hermitian matrices A and B,

sup |Fa(z) — Fp(z)| < 1 Rank(A — B)
z€R N

|[ESD4—ESDg]|

where Fy and Fg are the CDFs of ESD 4 and ESDpg, respectively.
The fact implies,

|ESDw, — ESDy, || < %Rank (Wi =)

1
~ Rank (nlnin')

1
=N —0, as N —
Since, ESDWN = lsc Where pg. is the semicircle law, it follows that,

ESDWN = Usc

Q: How does the largest eigenvalue behave?

22



4.1. FINITE-RANK PERTURBATION 23

Ans:
f(z)
XXX XXX XXX

Largest eigenvalue of WN — 2

o
R
T
i

Wy =Wy +plyly’

Convention: For a Hermitian matrix, denote its eigenvalues by Aj(A) > Ay(A) > -+ > Ay(A). We want to
study A1 (Wy). Recall, .
Wy =Wy Jr,ulNlN—r

The interlacement result implies,
|)\1 (WN) —)\1 (/LlNlNT)‘ § HWNH (41)
where for any N x N Hermitian matrix A,

41l = max_ |\ (4)

Suppose, A is N x N real symmetric. Then,
MA) = sup  z'Az

TERN:|z[=1
Now, 2" Az = 2" PDP '«
=Dy (sl =)
Then, sup z'Az= sup z' (B+(A—B))x

a:llzfl=1 2RV 2] =1

<supz' Bz +|supz' (A — B)z|
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Therefore,
A(4) =M (B) < [[A- B

Thus (4.1) becomes,
A (W) = Nl < Wy |

Dividing throughout by N,

A (W) 1‘~ H
— <
‘ N M_N‘ N
RN LS
VN VN YN
[
L1509
VN
S As N — oo, ‘M(VVN)—M‘—)O
N
A (W)
TN

In other words, the bulk of the eigenvalues of Wy are of the order v/N, that is,

ESDwy = pise
VN

But the largest eigenvalue is of order N, that is w — p in probability.

Q: How does % fluctuate around u for large N7
In other words, we want to know if (% — ,u) can be scaled up to have a non-zero limit.

Ans: Fix N. Let v be the eigenvector of Wy corresponding to the largest eigenvalue of W,,, A; (Wy) which
we will write as Aq.

That is,
WNU = )\11)

= (WN + /J,].N].NT) V= A\
i/VLlN (1NT’U) = )\1’1) — WN’U
~——

scalar

=p(InT0) 1y = (M = W) v (4.2)

Since the eigenvalues of W are of the order VN and \; is of order N, \;Iy — Wy is invertible with high
probability.
The (4.2) implies,

- -1
’U:/L(].NTU) ()\1[N—WN> ]-N
Premultiplying by 1x ", we get
- -1
1NT’U=/,(,'(1NTU) 1NT (AIIN_WN) 1N-

- —1
—1=p-1y57 (AJN —WN> 1n

Thus,
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Fact: If ||A|| < 1, then (I — A)~! = > o Al

QénﬂiiAjziiAi—iiAj
j=0 j=0 j=1
=1

Applying this fact to (4.3), we get,

[e%e] W 7
M= gy’ Z(f) B

§j=0
[e'e] TI71 1
Iy WaIln
B0 v
7=0 !
00 T1i7J
~ 1N W 1N
= Iy + Iy Wy iy —
)\1 i=2 >\1
j=
Further,
N
lNTWNlNZ Z WN(Za]) WN(Zaj)
ij=1
Y = Ainjivy — M
=) Xi+2 Z Xij = NGV
i=1 1<i<j<N

Since {Xij 1< < j} is a collection of iid zero mean RVS, Lindeberg’s CLT implies,

1 ~
NMWWM#N@%%N%%

Thus, )%INTWNlN = N(0,2) as N — oc.

Iy W1
Z(J?.;Q . A{N -
Thus, A\; — E (A1) = N(0,2) as N = o0
That is, Ay (Wx) has a Gaussian fluctuation in the limit.

is concentrated around its expectation.

oo Tr71
1% Ti% 1N WNlN

A =N —1n Wyl _—

1 M+)\1 N WnN N"’sz:; ¥

1

A — E()\l) ~ NlNTWNlN = N(O,Q)

Q: Can the entries of the Wigner-matrix be replaced by independent RVS, having possibly dif-
ferent distributions, with zero mean and variance one, and one still gets the semicircle law in the
limit?

CLT: In the CLT, can the summands have a different distribution so that the limit is still normal?

Lindeberg’s CLT:
Suppose that for n =1,2,...,n; X,,,...,X,, are independent zero mean RVS with,

lim ZVar (X,,) = 0? < o0
n—oo ot
If for all € > 0,
n
: 2 _ : e i,
nlgrgo; E (X7 1(|X,,|>¢)) =0 ( Lindeberg’s Condition )

then,
an = N(0,0'2> as n — oo

i=1
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Usual CLT: Suppose X1, Xo,... are iid zero mean RVs with variance o2. For n > 1, let

1
XRLZ%XZ) i:L...,n
It’s immediate that X,,,..., X,, are independent zero mean RVs.
Furthermore,
Xn:\/ar (X,,) = Zn:Var Xi
i=1 7' i=1 vn
= Z Var (X;)
i=1
= 0‘2

To check the Lindeberg condition, fix £ > 0 and observe,

n

S E(X2 (X >2) = ZE <Xi 1(1Xi| > \/ﬁ€)>

: n
1=1

=E (X7 1(Jz1] > Vne))

d

[[=7

—0asn— oo (since X gX2:-~- Xn)
Now,
d n
Snm > G,
i=1
Hence,
d
S, ~ ZGM ~ N (O,ai)
i=1
02 = Var (S,)
Proof: Let

Let Gn; : 1 < i < n be a collection of independent RVS, which is independent of X,,, as well, with G,; ~
N (O o2 )

'Y ni

d
If we can show that, S, = Y .— | Gn;, then the proof would follow because, Y i Gp;i ~ N (0, UTQL) and o2 — o2
by assumption.

We shall show that for all bounded function f : R — R which is thrice differentiable and its first three

derivatives are bounded,
e1y 501~ 15 (35 ) =0
i=1

lim
n—oo

The above would imply that,
lim E[f(S,)] = E[f(Z)] where z~ N (0,0?)

n—oo

and hence it would follow that,
S, =z

Proof:
Fix f : R — R as above. Taylor’s theorem implies,
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= [ (S, (Z Xm) + X, f! (Z ) + %Xﬁl f <Z Xn> + %Xﬁl (&) for some &

1=2 =2 i=2
Thus,
B((5)) ~ BUY Xn) = B(Xa, /(3 X))+ 50w (Y X)) + O(E| X, )
1=2 1=2 1=2
= £(S) = £ Xa) + X £O3 X)) + 5 X 21 (€)
1=2 1=2

n

n

< X (0 X)X 2f(€)

i=2 =2
= B [ 150 — (O Xo) = 3ou B 01| | < 5B (Xa? A 1%, )
=2
=|E|f (Gm +anxm) —f <2n:Xn>] < kE (|G, |?) = con,”
=2 =2

Combine the two inequalities to get,

E(f(S.)—E (f (Gm + me»

Replacing X,,, by G, one at a time, yields,

< kE (XEH A |Xn1|3) +Co3,

< kzn: (E (X2 A 1% ) + cznjaf”
i=1 i=1

Fix e > 0,

n

n n
S B (X2 A 1% ) = 3B (X2 A X [?) 10X ] )+ D0 B (X2 A X0 ) 1(1 X, | > 2)
=1 =1 =1

:>ZE|:XTH2/\‘XTH|31 ni |<5}<ZE\Xn|3 (|1 Xn,] <e) <EZE _):502%502

Ean =1

:>ZE {(Xni2 A |Xn,i|3) 1(|Xn,| > € } Ze (X2 4+1(|Xn,| >¢€)) =0 (by Lindebarg condition)
i i=1

To complete the proof, we need to show,
n
. 3
Jm > ol =0
i=

Fix € > 0. Then

n n
2
E O’nl E Oni " Opy < <1rgla<xn 0n1> E On,
i=1 =
——

o2

If we can show that,

lim max O‘n12 =0
n—oo 1<i<n

then we are done.
Proof:
Fix e > 0,
ol =E (X,,?)
=K (Xm? ([ X, | < 5)) +E (Xm-z 1| X, | > 5))
<e?+€(Xn 21 (|Xn| > )
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Therefore,

max oo <&+ 2@?<an (Xn, - 1(| X0, >¢)

1<1<n

n
< e + ZE (3372” + (|xm| > 6))

i=1

0

The last line follows from Lindeberg condition. Hence we get the complete proof. l

In Random Matrices, the Lindeberg principle can be applied in a similar way.
1 _
$(z) = B [T (Wy — 2Iy) 1}

where Wy is an N x N Wigner matrix (with entries having zero mean & variance one). The entries of Wy can
be "replaced” by standard normal RVs, one by one, as Lindeberg CLT.

It can be shown that if (using [Wi (i,7) = Xinjivi])
lim N2 Z E (XZQJ -1 (\Xij\ > E\/N)) =0 (Pastur’s Condition)
n—oo
1<i<j<N
then,

%E [Tr ((WN -~ ZIN)_l)} g

N

—1
H((i%—zljv) ]—)()as N — o0

where Gy is an N x N Wigner matrix with entries for standard normal.
Thus it would follow that under Pastur’s condition,

ESD@ = Usc-
VN



