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1 Matrix Multiplication

Multiplication of two matrices, two vectors, and a matrix and a vector can be written in many

different ways.

o We will consider vectors and matrices with real eleements unless otherwise stated.

o We will use lower case letters to denote m-vectors in column or row orientations.

We will

use, for example, a to denote a column vector (n x 1) and a* to denote a row vector (1 X n)

respectively.

e We will use upper case letters to denote a matrix. An m x n matrix A can be written in terms
of its n columns (where each column a; is an m-vector) or its m rows (where each row a;* is

an n-vector):
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4. From 3
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10. From 7

D (Ax)(Ax)T = A xix])AT = AXXT AT
i=1 i=1
11. Diagonal matrices
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2 Matrix/Vector Derivatives

2.1 Layout Conventions

The derivative of a vector with respect to a vector, i.e. %, is often written in two competing ways.
If the numerator y is of size m and the denominator x of size n, then the result can be laid out as
either an mxn matrix or nxm matrix, i.e., the elements of y laid out in columns and the elements
of x laid out in rows, or vice versa. This leads to the following possibilities:

1. Numerator layout, i.e. lay out according to y and 27 (i.e. contrarily to x). This is sometimes
known as the Jacobian formulation. This corresponds to the mxn layout.

2. Denominator layout, i.e. lay out according to y” and x (i.e. contrarily to y). This is
sometimes known as the Hessian formulation. Some authors term this layout the gradient,
in distinction to the Jacobian (numerator layout), which is its transpose. (However, gradient
more commonly means the derivative %, regardless of layout.). This corresponds to the nxm
layout in the previous example.

3. A third possibility sometimes seen is to insist on writing the derivative as %, (i.e. the
derivative is taken with respect to the transpose of x) and follow the numerator layout. This
makes it possible to claim that the matrix is laid out according to both numerator and
denominator. In practice this produces results the same as the numerator layout.

2.1.1 Numerator-layout notation

@ — |9y Oy Oy
ox - | Oz Oxo tt Oz
Ay
T
Oy2
Oy _ | 0w
Ox :
OYm
ox
B 8y1 8y1 - 82]1
oz Oz Oxn,
9y2 Oy2 .. Oy2
8}’ | Om Oz2 Oz,
ax . . ) .
OYm  OYm ... OYm
L Oxq Oxo Oxn
[ oy oy . Oy
Ox11 Oy Oz 1
Oy oy .. Oy
8y | 9712 Ox22 0T p2
aX . . ) .
oy 9y ... 9y
0x1q  Ox2q O pq




Notice in the above X is a p X ¢ matrix.

In vector calculus, for a scalar valued function f: R* — R, Vf = ( %)T is a column vector,

called the gradient vector.

Also if y is a vector-valued function (R™ — R™), then % is a m x n matrix, called the Jacobian

matrix.

The following definitions are only provided in numerator-layout notation:
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2.1.2 Denominator-layout notation

2.2 Useful formulas
1.
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iX(Ax) =A

5. Assume, A is real and symmetric (AT = A)
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3 Orthogonal Projection and Least Square Approximation

3.1 The Linear Algebra Way

1. Projection on a vector: The orthogonal decomposition of  on v means is decomposing « in
the following manner:

x = p + z such that p = tv (¢ is scalar) and z 1 v.
p = proj,x is called the orthogonal projection of x on v.

Show,

IBT’U

= —v
P= Ty

and if v is an unit vector, then p = (zTv)v.

Note that here we can consider T v as the coordinate of p in the space spanned by p.

Solution:

Let p = tv, here t is a scalar
z=x—p=x—1tv
z is orthogonal to v if and only if
0= (z—tv)v
=0=z.v— (tv.v)

=0=zv—t(v.v)

Ty —tvTo

=0==x

Since p = tv, we can write

If v is an unit vector, then v.v =1



2. Projection on a subspace: Projection of & on a subspace W, such that & ¢ W, is given by

p=projwx=&=VVie

here, W is spanned by orthonormal basis set B = {v,,v,,...,vg} and
V = [v,v, ... vg], the matrix with the v;’s as columns.

VVT is called the projection matrix.

Solution:

r=p+zst,peWor,zeW
Then, € =p=a1v, +..+ v = Va
and z=x— Vo«

We also have, z | W which means z L w, for any w € W. Then z L v; because z is in W+
and subspace W is spanned by the orthonormal basis vectors v;.

So,
zlv,=vi2=0=vT(z-Va)=0

zlopy=viz=0=vi(x—Va)=0

Combining these equations, we can write

v
v

s Ll

(x—Va)=0
Vi,

=VTi@x-Va)=0

=VTiz-Vi'Va=0

=VTiz-—a=0
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Since VTV = I ( Property of orthonormal matrix and here V is orthonormal matrix)

La=VTy
We have £ = Va
L2=VVTg
Note: Projection of @ in the direction of v;, for i =1,2,... k:

Projy, & = (wT'vi)vi

Therefore projection to the subspace can be expressed as,

& =projwx=VViz

= (xTvy)vy + (2Tvy)v, + - + (T v )vg

PrOJy, T + Projy, T + -+ + Projy, T

. Orthogonal Projection Gives the Best Approximation: Using Pythagorean Theorem
show that, |z — p||®> < ||z — ¢||°, where p = projwe, q is in W, and p # q. That is, p is the
best approximation of « in the subspace W.

Solution:
Both p and q are in W and distinct from each other. Then p—q isin W. z =x —p is

orthogonal to W. In particular,  — p is orthogonal to p — q. Therefore,

x—q=(x—p)+(p-q)

11



Using Pythagorean Theorem,
2 2 2
|z —q|” =l —plI” +Ilp — ql
Now ||p — g||* > o because p — q # o which implies ||z — p||* <||z — q|*
4. Change of Coordinates

projwe =VVTx

Observe that

o Ve =|z]  gives the coordinates of the projection (using basis B) and
e then the coordinates of the projection are changed from the basis B to S (the standard
basis).

is a dx1 vector and [:i] is a kx1 vector.

e If x is from a d-dimensional vector space, [:ﬁ] B

S

12



3.2 Orthogonal Projection: The Calculus Way

1. Projection on a vector Using Calculus find the vector closest (in least square sense) to @
in the direction of v. In other words, find the least square approximation of x in the space
spanned by v.

Solution:
A vector p in the direction of v is given by p = tv, where t is a scalar. Therefore, we need to
find ¢ that minimizes

J(t) =lz — to]
= (x —tv) (x — tv) = (7 — tvT)(z — tv)
=zl —tvTe — txTv + 2 (vTv)
LI () =2 - 26" + ||v)®

Differentiating the equation with respect to ¢, we get,

J'(t) = —22Tv + 2t||v|?
Setting J'(t) = 0 and solving for ¢ we get,

—2xTv + 2t|jv|* =0
T
T
v
Therefore, projection of  on v defined as p can be written as,

T
pP=—75v
o]

2. Projection on a subspace We seek the closest approximation of vector @ in the subspace
W which has dimension k. Assume, v;’s for i = 1,2, ..., k form an orthonormal basis for W.
Find the «;’s for i = 1,2, ..., k, s.t. the error J, given by

k
J=lz -2 = e~ awi’
i=1
is minimized.

Solution:
Any vector in W can be written as Zle a;v;. Thus,  will be represented by some vector

in Was >, &;v;. To minimize the error J we need to take partial derivatives.

13



k
J(aq, ... o) = Haz — ZaiviHQ
i=1
k k
=(x— Zai'ui)T(a: — Zaivi)
i=1 i=1
k k
= (z7 - Zaiv?)(ac - Zaivi)
i=1 i=1
k k k k
T Z oziviT —zT Z oU; + (Z aiv;f)(z @;v;)
i=1 i=1 i=1 i=1
k k
= HacH2 — ZZai:BTvi + Za? H'u,»”2 =1 and v;’s are orthogonal
i=1 i=1

Then we take partial derivative with respect to «; and set that to 0 for optimal value. We
get,
—2xTv; +20; = 0

SoOop = ZBT’U,L'

3.3 Ordinary Least Square Regression

Suppose we have n datapoints (™, yM), ..., (2™ y™), where 2()’s are d-vectors [:cgi), wgi), o ccg)]

(i.e., x contains the values of d features or (independent) variables) and y is a real number (called
the dependent variable).

We assume there is a function f(x) such that y = f(x). In linear regression, based on the data,

we want to find a linear (affine) function f that approximates f(in the least square sense).
Let,

§=f(x)=Bo+Piz1 + ...+ Baza
= Boxo + frx1 + ...+ Bazq |let, xo = 1]

That is, for each of the n datapoints x(?):

Bozs + BralV) + ...+ Baal) = g
Bong) + 5133(12) N deglz) (2)

g

ﬂoxén) + le(ln) +...+ ﬁdxfi") =™

14



1 1 1 Mo M.
A A ) ] [
L b g e
xén) xgn) xgn) _ﬂd_ _g(N)_

v [ [a0)

1 xg) 22| |5 B e

1 ang) x((iN) _ﬁd_ _Q(N)_

That means, we need to find the 8y, 8;..., B4 coefficients that satisfy the above equations. We
can view this problem as finding the solution to the system of linear equations (X3 = y). However,
this is a overdetermined system (more equations (or rows) than variables (or columns)). Therefore,
we can only find the best B that approximately solves the system of linear equation.

Or, we can also view this as an optimization problem and find the B that minimizes the Mean

Squared Error (MSE):

1 1 1
- @ _ 5= v =912 = —|lv — X232
n;(y i) = Iy = 311° = Iy — X8|

Note: Usually in linear regression the features or independent variables are transformed to
create a new set of variables. This can be done through basis functions ¢;(x) that transforms the
data and creates a datapoint in the transformed feature space, z; = ¢;(x), j =1,...,p. And
then we do linear regression using the transformed datapoints, Note that The basis functions can

be non-linear.

f(x) = Bo+ Biz1i+ ...+ Byzp
= Bodo(x) + B101(X) + ... + Bpop(x) [do(x) = 1]

Again, the MSE can be written as

1
~|ly - X8I
n

where,

po(zV) @1 (D) dp(zM) Bo
oo |6 al®) W@ |8
oz ™) @) ... g, (M) By

15



3.3.1 The Linear Algebra Way

Suppose we have a system of linear equations A3 = y, where X is a n X d matrix.

1

| | Ba
Here, A= |a, .. aq|,B= : ,and AB = fia, + Baas + - -+ + Baag.

| |
Ba
If the system of linear equations does not have a solution, y # f1a, + f2a5 + -+ + Brag, ie.,
y ¢ Col(A) = span{a,,as,...aq}.

. NIt
Then least square solution is 8, such that Hy — A,BH is minimum.

We observe, what we are asking for are the coordinates of § = projcoia)y. Now, we may not
have an orthonormal basis of Col(A), that is columns of A might not be orthonormal. Rather we
have a basis B’ = {a,, @, ...,aq} of the Col(A), assuming the columns of A are linearly indepen-
dent.

Show, R
B=(ATA) ATy

Y = projeoay = AB = A(ATA) ATy

Note, A(ATA)~1AT is called the Projection matrix and AT = (AT A)~1AT is called the pseudo-
inverse matrix.

Solution:

When a solution is demanded and none exists, in this scenario what we can do is to find a 3
that makes A3 as close as possible to y.

Here, A is n x d and y is in R™.
Let g =projcoi(a)y

16



Because g is in the column space of A, the equation A3 = g is consistent and there is a ,é in
R* such that,

AB=14
The projection ¢ has the property that y — ¢ is orthogonal to Col(A), so (y — AB) is orthogonal

to each column of A. R )
If a; is any column of A, then a;.(y—AB) =0 or a;‘r(y—A,B) =0.
Since each a;‘r is a row of AT,
AT(y—AB) =0
= ATy—AT4AB=0
= AT AB = ATy[These are called the Normal Equations]
S B=(ATA) ATy

Finally we have, § = projcoia)y = AB = A(ATA) 1 ATy

e Using QR decomposition:

Alternatively, § = QQTy where A= QR is the QR decomposition of A
Here, the columns of @ form an orthonormal basis for Col(A) and R is an upper triangular invertible
matrix.

AB=1g
= QRB = QQTy
ﬁ — R—lQTy

Note, the pseudo-inverse of A, AT = R=1QT

3.3.2 The Calculus Way

Using the derivative rules, as outlined in Section 2.2, we can use calculus to find the 3:

lly —AB|I> = (y — AB)" (y — AB)
= |ly|* —2y"AB + BT AT AB

%Ily —AB|P=0-2A4Ty +247 A
. 0 2 __
.%Ily AB|I7=0

— ATAp= ATy
,é = (ATA)flATy

17



4 Principal Component Analysis

In the previous section, we were given a k dimensional subspace W or more specifically a basis
of the subspace and we were asked to find a vector X in that subspace that is the least square
approximation (minimum reconstruction error) of a vector x ¢ W. We found that the X = projwx,
i.e., the orthogonal projection of x on W.

In Principal Component Analysis (PCA) our objective is to find ”best” the subspace or the
orthonormal basis of the subspace for a given set of datapoints. PCA can be interpreted in the
following two equivalent ways:

1. Least square reconstruction error minimization
2. Variance maximization

4.1 PCA as Least Square Reconstruction Error Minimization

In the least square reconstruction error minimization formulation, our goal is to find V', where
columns of V' are orthonormal and they form the orthonormal basis of W such that, the reconstruc-
tion error/ projection error

n
J = ZH(L‘] —p'l"ijiL‘jH2
j=1

is minimum. Here, the data points @,, &, .., &, are d-vectors (i.e., there are d features).

Solution to PCA problem: using summation notation

Any vector in W can be written as Z _, 03v;. Thus @, will be represented by some vector in W
as Zi:l Q4 v;.

To minimize the error J, over all n datapoints, we need to take partial derivatives and enforce
constraint that {1)1, - vk} are orthogonal.

n
J(V1 ey Vky Q11 ovy Qi :ZH% ZO‘JZWH

k
= § E a]Tv’l, Tj — § ajivi)
1=1

S

n

k
= E E :Oéaz” zj— ) a;ivi)
= i=1

n k k k k
T T T T
= E {.’Bj T; —x; E iV — T E Qj;V; + E Qj;U; E Ozji’Ui}
=1 i=1 i=1 i=1 i=1
n k
= § ||:1:J| -2 E E aﬂw v; + E E a?l *."v;’s are orthonormal
j=1 j=11i=1 j=11i=1

Then we take partial derivative with respect to some a,,;; and set that to 0 for optimal value. We
get,
—2:1:511;1 + 20, = 0

18



. _.T
.0 = Qjmvl

(But we already know this from the idea of orthogonal projection from the previous section)
Now we have to plug the optimal value for a,,; = wfnfvl back into J .

n k
J(v1, ... ZHJ:JH —ZZZ ac ;) x5 vl—&-zz acfv,
j=1 j=11:i=1 j=114i=1
n n k
=Y e’ =D @f )
j=1 j=11i=1
n
= const — Zv <ngw )m
j=1

= const — E vl Sv;

i=1

In matrix notation:
Assume X is a d X n data matrix, where each d-dimensional datapoint x; stored as the columns
of X. Then,

ZH&:J progWa:JH —HX VVTX‘

fro

tr(X —VvVTX)T(X —VVTX)) |43, = tr(ATA)
r(XTX - XTvVTX - XTvvTx + XTvvTvvTX)
r(XTX —2XTVVIX + XTVvVIX) [ VIV =1
r(XTX) —tr(XTVVTX)

= const — tr(XTVVTX)

t
t
t

Using the cyclic property of trace: tr(ABC) = tr(CAB) = tr(BCA) we get,
tr(XTVvTX) = tr(XXTVVT)
=tr(VIXXTV)
=tr(VTSV)

= (v Swy)
" ZHwa - projwmj||2 = const — Z(U;TSUZ')

J )

Note: Minimizing the reconstruction error is equivalent to maximizing the sum of the quadratic
forms 'v'vai where S is the Scatter matrix, if the data points are mean centered (more on this
below). We will discuss about maximizing a quadratic form Q(v) = vTSv in the next section.
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4.2 Covariance and Scatter Matrix

The matrix S has a nice interpretation. Observe, each row i of the matrix X is a feature vector
fi- If we subtract the row means (feature means, p;’s) of X from each element of the rows then
we have made sure that each f; has zero mean. This is sometimes called centering the data. We
will call mean subtracted data matrix, the demeaned data matrix X.

— by —
~ *Hzf
X=X-— .
e
-f11 - a'Ug(fl)
fo1 — (wg(fz)

_fd1 - a"vg(fd)

-f11 —avg(f.)
f12 - avg(.fl)

fln - avg(fl)

_fl_
,f2,

e

f12 — avg(f.)
fo2 — ng(fz)

faz — a'vg(fd)

Ja1 — avg(fs)
Ja2 — avg(fa)

f2n - avg(fz)

fln - avg(fl)
f2n - a’Ug(fz)

fan — Civg(fd)

fa1 — avg(fa)
fa2 — avg(fa)

fan — Givg(fd)

We can observe the ij-th element of X X7 is,

n

> (fae — avg(fa)) (fir — avg(f;)) = (n = 1)si;

k=1

where, s;; = cov(f;, f;) is the sample covariance between the features f; and f;.
Also observe, when i = j, s;; = cov(fy, fi) = var(f;).

SXXT=(n-1)%2

2
S11 S12 ... S1d
2

S21 S99 N S2d

=(n—-1)
2

Sd1 Sd2 - -- S4d

=S

Here, ¥ is the Sample Covariance matrix, and S is the Scatter matrix.

20



Observation 1: What happens when data is stored as rows in X?

nxd

SXTX =(n-1)%
We can easily show that we end up with the same maximization problem.

Observation 2: S is a real symmetric matrix.

4.3 PCA as Variance Maximization

We can think of the PCA as projecting x into the subspace of dimension k so that we can capture
maximum variance. That is, instead of thinking about reconstruction error, we can simply restrict
attention to directions where scatter or variability of the data is the greatest.

Suppose we want to embed two dimensional points in a one dimensional space, a line e. We can
see from the figure that the projection points are very spread out along the blue direction and they
are very bunched up along the green direction. So the variance along the blue dimension is higher
than the variance of the green one.

So why is good to have a high variance along the projection?

21



If we look at the two red points, they are pretty far away from each other in the 2-dimensional
space. If we happen to project them to the green dimension, they will end up being on top of
one another. So this dimension does not preserve distance of the original space. If points are far
away in original space, we want them to remain that way in the lower dimensional space. But if we
project them to blue line, they will stay apart from each other. (Though there will be some points
which will end up being close when we project them. If we can choose the direction with maximum
variability of the datapoints, we can reduce the number of such points).

How to find the direction of maximum variance?

1
i Z (vTa:j)2 = v XXTv=vTSv
J

From this, we can observe that the variance will be maximum when we project in the direction v
in which the quadratic form is maximized.

22



5 Maximization of Quadratic Form

There are two ways to maximize (or minimize) a quadratic form Q(v;) = vF Sv; subject to the
constraint ||v;||* = 1:

1. Calculus way: using the method of Lagrange Multipliers

2. Linear Algebra way: using Diagonalization method

5.1 Calculus way: Method of Lagrange Multipliers

Here, we will consider the sum of quadratic forms that we want to maximize in PCA. We will en-
force constraints v?vi =1 for all ¢ and incorporate the constraints with undetermined Aq,..., Ax.

Now we will need to maximize a new function J.

k k
J (01,02, 08) = >0 Sv; = Nj(v]v; — 1)
i=1 =1

Computing the partial derivative with respect to vy,

oJ
M =25V — 22 Um =0
Oy,

SV = AnUm

Therefore, A,;,’s and v,,,’s must be the eigenvalues and the corresponding eigenvectors of the Scatter
matrix S.

5.2 Linear algebra way

In this section we deal with maximizing a single quadratic form. The maximization of the sum of
quadratic from in PCA will follow from the solution to this problem. The problem of maximizing
a quadratic from sometimes appears in engineering literature as maximizing the Rayleigh quotient.

Rayleigh Quotient problem: For a fixed symmetric matrix A, the normalized quadratic form

e Qx) T Az
- i S A
z)* T

is called Rayleigh Quotient.
Since the quotient is scaling invariant, we can write:

ser™ fz=1 =T Az
Explanation: Let’s consider = cx. Then we get

mas  (cx)TA(cz) AzTAx 2T Ax

exADER™ (cx)T(cx)  c2xTx  zTx
It implies that we will get the same maximum value even when we choose a scalar multiple of .
That is why we will choose to use unit vector, i.e., ||z| = 1.

23



At this point we can see that our problem: max vT Sv subject to ||v||2 =1 is exactly the Rayleigh
Quotient problem with the real symmetric matrix S.

Observe if S were a diagonal matrix, then solving this maximization problem is easy. For instance,
consider the problem of finding the maximum value of

Q(x) = 927 + 4a3 + 323

subject to the constraint ||z|| = 1.
9 0 0f [z
In matrix form: Q = [xl To xg] 0 4 0] |z
0 0 3| |z

Solution: Since 3 and 22 are nonnegative, note that 423 < 922 and 323 < 923

and hence
Q(x) = 927 + 423 + 322
< 927 + 923 + 922
= 9(a] + a3 + a3)
=9
whenever 23 + 23 + 23 = 1
So the maximum value of Q(x) can not exceed 9 when x is a unit vector.

. Q(x) =9 when x = (1,0,0)
Thus 9 is the maximum value of Q(z) for 7z = 1.

Therefore, one way to solve the general quadratic form optimization problem will be to orthogonally
diagonalize S by changing of variable. In the following, we describe how to orthogonally diagonalize
a matrix. We will show that for a real symmetric matrix such a diagonalization always exists.

5.2.1 Diagonalization, Similarity Transformation, and Eigendecomposition
Similar Matrices: If A and B are n X n matrices, then A is similar to B if there is an invertible

matrix P such that P~* AP = B or equivalently, A= PBP™*.

Note: if A and B are similar, then they have the same characteristic polynomial and
hence the same eigenvalues. They also have same number of independent eigenvectors. To
show the claim:

First, if A is an eigenvalue of A, then Ax = Ax and since A and B are similar, PBP™* = A.
S0,
PBP 'z =)Az

B(P 'xz)=AP 'z

which is the eigenvalue problem formulation for B. Therefore, we find, though the eigenvectors
P~*x # x but the eigenvalue A is the same for A and B.

Another way to see this,
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det(B — )

= det(A — \I)

So, the matrices have the same characteristic equation.

Diagonalizable matrix: An n X n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors. In fact, A = PDP~*, with D a diagonal matrix, if and only if the
columns of P are linearly independent eigenvectors of A. In this case, the diagonal entries of D are
eigenvalues of A that correspond, respectively, to the eigenvectors in P.

Diagonalization Theorem
A is diagonalizable iff A has n linearly independent eigenvectors. In this case, we may construct

P by stacking the n eigenvectors and D as a diagonal matrix with the corresponding eigenvalues.
Proof:

d 0 ... 0
. 0 dy ... O
Consider the columns of P = (p1 pPs ... pn) and D =
0 0 ... d,
Let’s assume that A = PDP~* and we multiply by P on the right
AP =PD
(Apl Ap> ... Apn) = (d1p1 dops ... dnpn)
This implies that
Ap, = dip,
Ap, = dap»
Apn = dnpn

But this is the definition of eigenvector, so all the columns p; in P must be eigenvectors of A and
d; its corresponding eigenvalue. Since P is invertible, its columns must be linearly independent.

Note that,
An n x n matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

When is A, «, not diagonalizable?
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While diagonalizing A, if we come across fewer than n total vectors in all of the eigenspace bases,
then the matrix is not diagonalizable. We can say, if the algebraic multiplicity of A does not equal
to the geometric multiplicity, then A is not diagonalizable.

5.2.2 Eigenvalues and Eigenvectors of Real Symmetric Matrix:

Theorem: An n x n real symmetric matrix A has real eigenvalues.
Proof: The conjugate transpose of a matrix A is denoted by A, then the Hermitian property
can be written as

A Hermitian <= A = A?

(™ Ax) = 2H Ax

.z Az must be real.

Az = )\x
Multiplying by & from left on both sides,

e Az = ez = \|z|?
zH Az

\ =
zHzy

=real xF#0

Theorem: If A is symmetric, then any two vectors from different eigenspaces are orthogonal.
Proof: Let v, and v, be eigenvectors that correspond to distinct eigenvalues, say A; and A;. To
show that v,.v, = 0, we have to compute

= (Av,) v, [ vy is an eigenvector]
= ('l;lTAT)'l)2

=v,7(Av,) [ AT = A]

= v, T (Avs) [ v, is an eigenvector]
= Aavy" V2

= A0, .0,

Hence (A — A2)v,. v, =0
But (A — A2) #0, so v,.v, =0

5.2.3 Orthogonal Eigendecomposition and its Geometric Interpretation:

Suppose A = PDP~!, where the columns of P are orthonormal eigenvectors w1, ..., u, of a real
symmetric matrix A and the corresponding eigenvalues Aq,..., A, are in the diagonal matrix D.
Then, since P~! = PT,
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A=PDPT

A 0| [uT
—[un ... U]
0 An| [uE
uy
:[Alul )\nun] :
Uy

We can write
T

A= Aluluf + )\guzuf + - A unu,

This representation of A is called a spectral decomposition of A because it breaks up A into
pieces determined by the spectrum (eigenvalues) of A.

Each term is a n X n matrix of rank 1. For example, every column of A\ju,uT is a multiple of u,.
The matrix-vector product Ax is decomposed as

n
T
Az = Z Ajug(uj o)
j=1
e Each matrix ujuJT is a projection matrix in the sense that for each & in R", the vector ujufa:
is the orthogonal projection of @ onto the subspace spanned by u;,

i T — (s — . L j
Le, ujuj x = uj(uj.) = (U;.2)U;=proju,;x

T

o (ufx,... ,ul'z) are coordinates of x in the orthonormal basis {uy,...,u,}

o (Mufw, ... M\ulr) are coordinates of Az in the orthonomral basis {u1, ..., u,}

Change of Variable in Quadratic Form and its Geometric View:
A quadratic form on R™ is a function ) defined on R™ whose value at a vector  in R™ can be
computed by an expression of the form Q(x) = T Az, where A is an n x n symmetric matrix.

Let x = Py or equivalently, y = P~z

where P is an invertible matrix and y is a new variable vector in R™. Here y is the coordinate
vector of x relative to the orthonormal basis of R™ determined by the columns of P.

If the change of variable is made in a quadratic form 27 Az, then

a® Az = (Py)T A(Py) = y" (PTAP)y

and the new matrix of the quadratic form is (PTAP). Since A is symmetric, it is guaranteed that
there is an orthonormal matrix P such that (PTAP) is a diagonal matrix D and we get yT Dy
with no cross product term.

Geometric View
When A is not diagonal, then the graph of the equation T Az = c is rotated out of standard

27



position. Finding the principal axes (columns of P) amounts to finding a new coordinate
with respect to which the graph is in standard position.

%

/j‘\
\Ma X‘
i, 53

—“=1,a>b>0
2 b

a
ellipse

Figure 1: Ellipse in standard position

(a) Sx% - 4x,x, + 5x% =48

Figure 2: Ellipse not in standard position
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5.2.4 Finally the Solution to the PCA Problem:

We approach our mazimization problem by orthogonally diagonalizing S as § = PDPT and making
the change of variables v = Py — y = PTv. We know

Qv) =vTSv =y" Dy
Additionally, [|y||* =||v||* because

Iyl = y"y = (PTv)" (PTw) = v"v = ||v|?

Since D is diagonal, we have

yT Dy = Myi + Xoyd + - + Ay

Let’s look for the maximum of these values subject to||y|| = 1. If we consider the maximum eigen-
value A\j,qz, then

y Dy = Myt + Xays + - + Aayg
< Amaacy% + /\maacyg +- /\maxyg
= /\maz(y% +y§ + +y¢2i)

2
= Anaz Y|
= )\maz
the value \,q; is attained for yma, = (00 0 ... 0 1 0 ... 0), where the 1is at the location
corresponding to Ay,q.. The corresponding v is
0
0
0
V= Py = (ul Uz ... Umazr—1 Umazr Umaz+l --- Ud) 1
0
0

.U = Umaz

Therefore we can conclude that desired v is Umae Which is the eigenvector associated to the largest
eigenvalue Ap, gz

Note that,

When we project on a subspace with orthonormal basis, the covariance of the projected data is zero.

Additional Notes:

1. Change of Basis and Similar Matrices: To get more insight on the connection between
similarity transformation and change of basis, let’s see the following,
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Suppose A is diagonalizable (A = PDP~!). If B is the basis of R" formed by the columns
of P, then

Ap;, € R" .. Ap; = Pc; (for some ¢;)
= [Apilg =¢;
AL .pn] =Pler ... ¢
— AP = PC
— P 'AP=C

— A=PCP! (x)

A and C are similar matrices if there exists another matrix P such that A = PCP~!

Multiplication

X Ty > Ax
Multiplication Multiplication
by p-! by P
Multiplication
Xl > [AX],
[x], v [Ax],
Ay = PCP ™ [x],
= PC [x|g (under A)
= P [Ax], (under C)
= [Az] 0

C performs the same transformation, but in the coordinates defined by B. Now, if C is a
simpler matrix (e.g. diagonal), then the transformation is easy. So, find a coordinate system
(set of basis vectors), where the transformation 7' can be performed by a diagonal matrix.

Consider a linear transformation between two vectors spaces T : V — V. Let T'(z) = t. Let
E be the basis of V' and F' be the basis of W

Let A be a matrix under T with respect to E, and B be a matrix under T' with respect to
F'. Let S be the change of basis matrix from F — E.
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[ty = S~ AS [x]
— B=S"'A4S
— A=SBS!

2. Theorem: A real symmetric matrix is Positive Definite (PD) if (i) Az >0 Vz # 0 and
(i) all the eigenvalues of A satisfy \; > 0
x is eigenvector of A
Proof: In the first step we will show that each eigenvalue will be positive.
Ifx? Az >0:
2"z = Az

2TAz >0 = A>0

If A, > 0:

x is any vector and x # 0

T =ClT,+CTs+ - +CrTp

where ,, T, ..., X, are eigenvectors.

T Az = (clcclT 4 cn:ch)A(clwl + 4 cpn)
= Zcfa:?Amz
i

= Zcf)\l:c;‘rwz >0 A >0, a:fwl >0 Vx#0
i

3. The Transpose Trick PCA
Suppose the image database consists of N = 30 images. All images have the same dimension
m X n = 100 x 100. The matrix P has 30 columns and mn rows.
We are interested in the eigenvalues and eigenvectors of the Scatter matrix PPT, but the
matrix PPT has the dimensions 10000 x 10000 and computation of eigenvalues and eigen-
vectors become unfeasible.
The dimensions of PT P are only 30 x 30 and it is much more efficient to solve the eigenvalue
problem for the matrix PT P.
We will show the relation between the eigenvalues and eigenvectors of PPT and PT P.
If x; is an eigenvector of PTP and ); is its corresponding eigenvalue, then we can write the
following:

(PTP)JLL = )\ia:i
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Multiplying by P from the left,
P(PTP)x; = P\x;

(PPT)Px; = \(Px;)

shows us that if x; is an eigenvector of PT P, then Pzx; is the eigenvector of PPT, with the
same eigenvalue.
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6 Linear Discriminant Analysis (LDA)

Fisher Linear Discriminant projects data to a line which preserves useful direction for data classifi-
cation. Its main idea is to find projection to a line such that samples from different classes are well
separated.

Suppose we have 2 classes and d—dimensional samples x1,...,x, where n; samples come from
the first class (¢1) and ng samples come from the second class (c3).

Let the line direction be given by unit vector v. Thus the projection of sample z; onto a line in
direction v is given by vTx;. The scalar

’UTZL'

Y=
[[v]]

is the projection of = along v.
Measurement of separation between projections of different classes
Let 47 and iz be the means of projections datapoints belonging to classes 1 and 2 respectively.
Let pq and po be the means of classes 1 and 2.
i = e =0T (L e i) = v
Similarly, fio = v7 o

The larger |17 — piz], the better is the expected separation. The problem with |7 — fiz| is that
it does not consider the variance of the classes.

We have to normalize |g7 — fia| by scatter. y.s are the projected samples.
Scatter for projected samples of class 1is: 0% = > (y; — 4i1)?
Scatter for projected samples of class 2 is: 03 = > (y; — piz)?

Thus Fisher Linear Discriminant is to project on line in the direction v which maximizes:
(4 — 4ia)?
J(v) = "5
oy + 03
To maximize J we want (i1 —/i2)? to be large, i.e., the projected means to be far from each other.

And we also want o2, tha scatter in class 1, to be as small as possible, i.e. samples of class 1
cluster around the mean fi;. The same goes for class 2.

If we find v which makes J(v) large, we are guaranteed that the classes are well separated.
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Assuming the classes to be equiprobable, it can be shown that:

~ -2
(11— p2)” = 0" (1 — p2) (1 — p2) v o 07 Spw

where Sy, is the Between-class scatter matriz and tr(Sp) is the measure of the average (over all
classes) distance of the mean of each individual class from the respective mean.

We have,

o} = Elly — :)?] = Blo" (¢ — ) (z — i) "v] = o7 Ty

where for each i = 1,2, samples y(x) from the respective class v; have been used.

Y; is the covariance matrix corresponding to the data of the class v; in the d dimensional space.
Using the definition of S,, we get,

0?4+ 02 x vT S,v

where S,, is the Within-class scatter matriz. tr(S,,) is a measure of the average, over all classes,
variance of the features.
Combining we end up that the optimal direction is obtained by maximizing Fisher’s criterion:

'UTSb’U

J(v) = vT S,v

This is called the Generalized Rayleigh quotient.

Since Sy, is PD, then S, = RTR
Let y = Rv
So,v=R *y=Cy

vITSyv  yTCTS,Cy B yTCTS,Cy B yTCTS,Cy

" oTS,v  ovIRTRv (Rv)TRv yTy

Now it has turned into the aforementioned Rayleigh Quotient.

The Generalized Rayleigh quotient is maximized if v is chosen such that Spv = AS,v. This
is the generalized symmetric eigenvalue problem. Since the extreme values A of the Generalized
Rayleigh quotient satisfy

Sbv = )\Su,v

= Spv = AR"Rv
= S,Cy = \RTy
= RT "Sycy = \y
S CTS,Cy = )\y
The top eigenvector y, of CTS,Cy :
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yTCTS,Cy B

A1
yTy

max

when
CTS,Cy, = \ya

Then .
Spv, = ASyv, for v, = Ry, = Suw? Y,

The eigenvalues of Spv = AS,,v are real because CT S, C is a a real symmetric matrix.
The orthogonality condition of two eigenvectors being orthogonal (in the case of two distinct
eigenvalues) for a symmetric matrix extends to Spv, = AS,v, with two symmetric matrices. For

this we have to assume S,, is positive definite and we have to change from vTwv, = 0 to "M-
orthogonality” of v, and v,.

Two vectors are M-orthogonal if vT S, v, = vIT RT Rv, = yTy, =0
when Spv; = A1Sw1, Spvo = A2Sywv, and and A # A
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7 Singular Value Decomposition

A rectangular m x n matrix A can not be decomposed in the previous manner. Singular Value
Decomposition fills this gap. Now we need two sets of singular vectors the u’s and the v’s. The
connection between u’s and v’s is not Ax = Ax, but rather AV =UX

or, A =UXVT The matrices on the R.H.S are, respectively, (orthogonal), (diagonal) and (orthog-
onal).

cp 0 0O ... 0 0O
0 oo 0 ... 0 0 O
‘ ‘ ‘ ‘ ‘ ‘ 0 0 o3 ... 0 0 O
Aan Vi Vg2 ... Vu| = (ur uz ... Uy . (1)
| \ | \ 0 0 0 o 0 0
nxn mXm
0 0 0 0 0 O
mxn
(o 0 0 ... 0 0 0
0 o2 O 0 0 0
‘ ‘ ‘ ‘ ‘ ‘ 0 0 o3 0 0 0
= |[Av; AV2 AVn = |u; ug u,, (2)
o N CRE B A
mxXn mXm
0 0 0 0 0 O
mXn
Here,
U is m x m orthogonal matrix, u1,...,u,, are called m left singular vectors in R™.
V is n x n orthogonal matrix. v1,...,v, are called n right singular vectors in R™
XY mxn has positive entries o1, ...,0, which are in descending order o7 > 09 > --- > 0. They

are called the singular values of A. They fill the first r places on the main diagonal of X' - when A
has rank r. The rest of X' is zero. We can rewrite (2) as:
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AV1 = o1Uu1

AV2 = O0g2U2

Av, = o,u,

AVr+k =0

Observations:

1. You will see later on why the rank r of matrix A and subsequently the ranks of AT A and
AAT are important. Essentially, we only need r u and v vectors and that is enough for the
decomposition of matrix A, which will be achieved by using AT A and AAT.

2. It is also interesting to note that AT A and AAT are square matrices. So, we will prove later
on that these square matrices have exactly r non-zero eigenvalues (with repetitions) and n—r
zero eigenvalues. These r non-zero eigenvalues will yield the r eigenvectors of V' and the rest
of the n — r eigenvectors will come from the eigenspace of the n — r zero eigenvalues.

3. The ranks are therefore important because we need to be certain that the matrix A will be
decomposed correctly into U, ¥ and V'

7.1 Finding the singular vectors

Our goal is to find two sets of singular vectors (which are orthonormal)- the u's and v's. We
begin with finding V.

One way to find V is to form the symmetric matrix AT A.
ATA = (VvXTUD(UXVT)=vXTyvT

The right side has the special form PDPT.

Eigenvalues are in D = XT X

So now we know how V connects to the symmetric matrix AT A. V contains orthonormal

eigenvectors of AT A.

Before we prove Observation (2) above, we will first prove that if A has rank r = dim(colspace(A)) =
dim(rowspace(A)), then AT A and AAT both will have rank = 7.

Proof: The set of vectors which satisfy AT Az = 0 is called the nullspace of the matrix AT A.
So, z € N(AT A)
AT Az =0
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2T AT Az =0
(Az)T(Az) =0
LAz =0 [r2Tr=0& 2 =0
sz € N(A)

. N(ATA) C N(A) Again, x € N(A)

Az =0

AT Az =0

.z € N(AT A)

S N(A) C N(ATA)

So it is obvious that N(ATA) = N(A) = dim(N(AT A)) = dim(N(A))
According to the Rank-Nullity Theorem

dim(colspace(A)) + dim(N(A)) = n = dim(colspace(AT A)) + dim(N (AT A))
It gives, r = dim(A) = dim(AT A)

We can also get, dim(N(A)) = dim(N(ATA)) =n —r

Again,

AATy =0
yTAATy =0
(ATy)T(ATy) =0
ATy =0 2Tz =0 2=0

The left nullspace is the space of all vectors y such that A7y = 0 or equivalently y7 A = 0.
It is obvious that N(AAT) = N(AT) = dim(N(AAT)) = dim(N(AT)

According to the Rank-Nullity Theorem

dim(colspace(AT)) + dim(N(AT)) = m = dim(colspace(AAT)) + dim(N(AAT))

Since dim(A) = dim(AT), it gives, r = dim(A) = dim(AAT)

We can also get, dim(N(AT)) = dim(N(AAT)) =m —r
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Now we will prove Observation 2.

Lemma: The rank of any square matrix equals the number of nonzero eigen-values
(with repetitions), so the square matrix AT A, , of rank r will have r numbers of
eigenvalues and n — r number of zero eigenvalues. We already have ATA = VXTXVT,

So AT A and S(= X7TX) are similar matrices. We have to show that they have the same rank r.

Proof: Let Y = ATA
We have Y = VSVT
= V1YV =8 = YV=VS

Let Su =0, when u € N(S)
VSu=0,. . ueNWVS)
~ N(S) C N(VS)

When V is invertible
VSx=0,if z € N(VS)
Sr=V-10=0,..2€N()
S.N(VS) C N(S)

N(WVS)=N(S)
From Rank-Nullity Theorem
rank (V.S)=rank (S5) when V is invertible
Similarly, rank (Y'V)=rank (Y') when V is invertible
. rank (Y) = rank (5)

If AT A is diagonalizable and AT A = V.SVT then AT A and S are similar and of course S con-
tains the eigenvalues of AT A. And since the ranks are same and equal to 7, then S must contain
r nonzero rows and n — r rows of zeros which implies AT A has r nonzero rows and n — r rows of
Zeros.

So the eigenvalues of AT A are all nonnegative. We may assume that the eigenvalues are rearranged
sothat Ay > Ao >\, >0

The singular values of A are the square roots of the eigenvalues of AT A, denoted by o1, ..., 0.
ATA= UV T(UXVT)=VvXTUTUXVT =V, diag(c?,...,0%) V,T

AAT = (USVT)NUSVT)T = USVIVETUT = U, diag(c?,....02) UT
That is, 0; = VA for 1 <i <7

Observation:

1. The singular values of A are the lengths of the vectors Avy,..., Av,.
It can be seen in the following way: Let A1, ..., )\, be the associated eigenvalues of AT A,, ..
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Then for 1 <i <7,
[ Avil|” = (Av:) Av
= ’UiTATAUi
= vl (\vy) [ v; is an eigen vector of AT A]
= \; [ v; is a unit vector]

2. The eigenvalues found from AT A and AAT are incidentally the same. The eigenvectors are
different.

So, we have found the vectors in V. Earlier, we saw that SVD requires Avy, = opu. It connects
each right singular vector vy to a left singular vector ug, for k = 1,...,7. The u vectors obtained
from this will be valid if and only if:

1. They are eigenvectors of AAT
2. They are orthogonal to each other

So the unit eigenvector is uy = ‘%’c’“ fork=1,...,r

Check that these u’s are eigenvectors of AAT:
AATwy, = AAT (AL) :A<m) — ATkvE

Ok Ok
A’U}C
Ok

Using uy, =
AA Ty, = U,%uk

The v’s were chosen to be orthonormal. Now we will check that u’s are also orthonor-
mal:

T
Av; A vT (AT Av
JM:<%><Uw:J(w:%ﬁ%

J . .
gj O 040k gj

v on g f1 ifi=k
"o ifj£k

Finally we have to choose the last n — r vectors v,41 to v, and the last m — r vectors u,4+1 to U,
so that they form the orthogonal bases for R™ and R™ respectively.

Observations

1. These v’s and «’s are in the nullspaces of A and A”. We can choose any orthonormal
bases for those nullspaces.
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2. It can therefore be noted that obtaining the eigenvectors from the eigenspace of
the zero eigenvalues is equivalent to obtaining the vectors from the nullspace of
A.

3. The last n —r vectors of V' and the last m — r vectors of U will automatically be orthogonal
to the first v’s in the row space of A and the first «/s in the column space of AT respectively
because the whole spaces are orthogonal: N(A4) L C(AT) and N(AT) L C(A)

Multiplication

/—I-J_}:’i-—\

We will prove that uy,...,u, provide an orthogonal basis for Col A.

Proof: We saw earlier ul u; = 0 for i # j, so (Av;)T (Av;) =0

Thus {Avy, ..., Av,} is an orthogonal set. Since there are r nonzero singular values, Av; # 0 if and
only if 1 <4 <r, so Avy,..., Av, are linearly independent vectors and they are in Col A. Finally
for any y in Col A say y = Az we can write x = cyvy + -+ - + cpvp

and y = Az = 1 Avy + - + ¢ Avp + G g1 AVpp1 - - -+ cr Auy,
Sy=cAv -4 Av 40440

Thus y is in Span {Avy,..., Av,.} which shows that {uj,...,u,} is an orthogonal basis for Col A
and rank = r. [Proved]

As we know, (Col A)t=Nul A”. Hence u,1,..., U, is an orthonormal basis for Nul A7
Since ||Av;|| = o; for 1 <4 < n, and o; is 0 if and only if ¢ > r, the vectors v,41,...,v, Span a
subspace of Nul A of dimensions n — 7.
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By the Rank theorem, dim Nul A = n—rank A. It follows that v,11, ..., v, is an orthonormal basis
for Nul A.

The orthogonal complement of Nul A is Col A. Interchanging A and A, note that (Nul A)+=Col
AT= Row A. Hence vy,...,v, is an orthonormal basis for Row A.

(Additional) Observation 1. Eigenvectors of AAT must go into the columns of U

AAT = (uxvT(vETUT) =UuxxTuT

As we already saw earlier, U contains the orthogonal eigenvectors of AA”. The m by m diagonal
matrix is in the middle X X7 with the eigenvalues 0%,...,02 on the diagonal.

Observation 2. For positive definite matrices, X is D and UXVT is identical to PDPT. For
other symmetric matrices, any negative eigenvalues in D become positive in Y.
For complex matrices, X remains real but U and V become unitary (the complex version of orthog-
onal). We take complex conjugates in UXU = I and VHV =T and A =UXVH

7.2 Best Matrix approximation

SVD separates the matrix into rank one pieces. A special property of the SVD is that those
pieces come in order of importance. The first piece ojujv! is the closest rank-one matrix to
A. A rank-k approximation is obtained by keeping the leading %k singular values and vectors and
discarding the rest.
A truncated SVD basis (and the resulting approximation matrix Aj) will be denoted by A; =
usvT
Since X is diagonal, the rank-k SVD approximation is given by the sum of &k distinct rank-1 matrices:
Ak- = Z§=1 CTjUj’UJT = O’lulv{ + O'QLLQ’U%1 —+ e+ Ukuk’U%1
For a given k, there is no better approximation for A, in the ¢5 sense, than the truncated SVD
approximation.
Eckart-Young Theorem: If B has rank k, then |A — B[ >||A — Ail| ¢
Proof: A, = U diag (01,02,...,0%,0,...,0)VT rank(A4;) = k

k

Ak-: E oiuiv;r
i=1

n
A= Axlla = || Y o) || =oxi
i=k+1 )

The whole proof of ||A — B|| > ok+1 depend on a good choice of the vector z in computing the
norm ||A — B|| :
We will choose x # 0 so that Bx =0 and = = ]fﬂ Civ;
First, the nullspace B has dimension > n — k, because B has rank < k.

Second, the combinations of v; to vg41 produce a subspace of dimension k + 1. Those two
subspaces must intersect.
When dimensions add to (n — k) + (k + 1) = n + 1, the subspaces must share a line (at least).
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Choose a nonzero vector x on this line. Use that x to estimate the norm A — B. As Bx = 0 and
Av; = ouy:

= Byal* = Al =[5 e

=lcioiu||* = X5 ¢2os

That sum is at least as large as (3 ¢7)o,,,,which is exactly |z ORit
Sol|(A — B)z|| = osalle]
|A = BIl > 01 =|[A— Al
We still have VkTVk = I and UgUk = I, from orthogonal unit vectors v's and u’s.
But when Vj, and Uy, are not square, we can no longer have two-sided inverses:V, VI = (n x k)(k x
n) # Iy and U UL = (m x k)(k x m) # I
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