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1 Matrix Multiplication

Multiplication of two matrices, two vectors, and a matrix and a vector can be written in many
different ways.

• We will consider vectors and matrices with real eleements unless otherwise stated.

• We will use lower case letters to denote n-vectors in column or row orientations. We will
use, for example, a to denote a column vector (n× 1) and a∗ to denote a row vector (1× n)
respectively.

• We will use upper case letters to denote a matrix. An m×n matrix A can be written in terms
of its n columns (where each column ai is an m-vector) or its m rows (where each row ai

∗ is
an n-vector):

A︸︷︷︸
m×n

=

a1 a2 . . . an

 =


— a∗1—
— a∗2—

...
— a∗m—



1.1 Useful formulas:

1.

a
col

b*

row
=


a1
...

am


︸ ︷︷ ︸
m×1

[
b1 . . . bp

]︸ ︷︷ ︸
1×p

=

b1a b2a . . . bpa


︸ ︷︷ ︸

m×p

(a rank 1 matrix)

2.

AB︸︷︷︸
m×p

=

a1 a2 . . . an


︸ ︷︷ ︸

m×n


— b∗

1—
— b∗

2—
...

— b∗
n—


︸ ︷︷ ︸

n×p

= a1b
∗
1 + . . .+ anb

∗
n (sum of rank 1 matrices)

3.

AB = A

b1 b2 . . . bp

 =
[
Ab1 Ab2 . . . Abp

]
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4. From 3

AB =


— a∗1—
— a∗2—

...
— a∗m—


︸ ︷︷ ︸

m×n

b1 b2 . . . bp


︸ ︷︷ ︸

n×p

=


a∗1b1 a∗1b2 . . . a∗1bp

a∗2b1 a∗2b2 . . . a∗2bp

...
...

. . .
...

a∗mb1 a∗mb2 . . . a∗mbp

 =


— a∗1B—
— a∗2B—

...
— a∗mB—


︸ ︷︷ ︸

m×p

5. From 2

Ax =

a1 a2 . . . an


︸ ︷︷ ︸

m×n


x1

x2

...
xn


︸ ︷︷ ︸
n×1

= x1a1 + x2a2 + . . .+ xnan

6. From 4

Ax =


— a∗1—
— a∗2—

...
— a∗m—

x =


— a∗1x—
— a∗2x—

...
— a∗mx—


7. From 2

A =

a1 a2 . . . an


AAT =

n∑
i=1

aia
∗
i (or

∑n
i=1 aia

T
i )

8. From 4

ATA =


aT1 a1 aT1 a2 . . . aT1 an
aT2 a1 aT2 a2 . . . aT2 an
...

...
. . .

...
aTna1 aTna2 . . . aTnan

 =


— aT1 A—
— aT2 A—

...
— aTnA—


9. From 7

n∑
i=1

(aTxi)
2 =

n∑
i=1

(aTxi)(x
T
i a) (xi’s are n-vectors)

=

n∑
i=1

aT (xix
T
i )a

= aTXXTa
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10. From 7

n∑
i=1

(Axi)(Axi)
T = A(

n∑
i=1

xix
T
i )A

T = AXXTAT

11. Diagonal matrices

(a)

PD =

p1 p2 . . . pm


︸ ︷︷ ︸

m×m


d1 0 . . . 0
0 d2 . . . 0
...

... . . .
...

0 0 . . . dm


︸ ︷︷ ︸

m×m

=

d1p1 d2p2 . . . dmpm



DP =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dm


︸ ︷︷ ︸

m×m

p1 p2 . . . pm


︸ ︷︷ ︸

m×m

=


— d1p

∗
1—

— d2p
∗
2—

...
— dmp∗

m—



(b)

UΣ =

u1 u2 . . . um


︸ ︷︷ ︸

m×m



σ1 0 0 . . . 0 0 0
0 σ2 0 . . . 0 0 0
0 0 σ3 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . σr 0 0
...

0 0 0 . . . 0 0 0


︸ ︷︷ ︸

m×n

=

σ1u1 σ2u2 . . . σrur 0 . . . 0n


︸ ︷︷ ︸

m×n

(c)

UΣV T =

σ1u1 σ2u2 . . . σrur 0 . . . 0n


︸ ︷︷ ︸

m×n


— v∗

1—
— v∗

2—
...

— v∗
n—


︸ ︷︷ ︸

n×n

= σ1u1v
∗
1 + σ2u2v

∗
2 + σ3u3v

∗
3 + . . .+ σrurv

∗
r + 0
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2 Matrix/Vector Derivatives

2.1 Layout Conventions

The derivative of a vector with respect to a vector, i.e. ∂y
∂x , is often written in two competing ways.

If the numerator y is of size m and the denominator x of size n, then the result can be laid out as
either an m×n matrix or n×m matrix, i.e., the elements of y laid out in columns and the elements
of x laid out in rows, or vice versa. This leads to the following possibilities:

1. Numerator layout, i.e. lay out according to y and xT (i.e. contrarily to x). This is sometimes
known as the Jacobian formulation. This corresponds to the m×n layout.

2. Denominator layout, i.e. lay out according to yT and x (i.e. contrarily to y). This is
sometimes known as the Hessian formulation. Some authors term this layout the gradient,
in distinction to the Jacobian (numerator layout), which is its transpose. (However, gradient
more commonly means the derivative ∂y

∂x , regardless of layout.). This corresponds to the n×m
layout in the previous example.

3. A third possibility sometimes seen is to insist on writing the derivative as ∂y
∂x′ , (i.e. the

derivative is taken with respect to the transpose of x) and follow the numerator layout. This
makes it possible to claim that the matrix is laid out according to both numerator and
denominator. In practice this produces results the same as the numerator layout.

2.1.1 Numerator-layout notation

∂y

∂x
=
[

∂y
∂x1

∂y
∂x2

. . . ∂y
∂xn

]

∂y

∂x
=


∂y1

∂x
∂y2

∂x
...

∂ym

∂x



∂y

∂x
=


∂y1

∂x1

∂y1

∂x2
· · · ∂y1

∂xn
∂y2

∂x1

∂y2

∂x2
· · · ∂y2

∂xn

...
...

. . .
...

∂ym

∂x1

∂ym

∂x2
· · · ∂ym

∂xn



∂y

∂X
=


∂y

∂x11

∂y
∂x21

· · · ∂y
∂xp1

∂y
∂x12

∂y
∂x22

· · · ∂y
∂xp2

...
...

. . .
...

∂y
∂x1q

∂y
∂x2q

· · · ∂y
∂xpq
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Notice in the above X is a p× q matrix.

In vector calculus, for a scalar valued function f : Rn → R, ∇f = (∂f∂x )
T is a column vector,

called the gradient vector.

Also if y is a vector-valued function (Rn → Rm), then ∂y
∂x is a m×n matrix, called the Jacobian

matrix.

The following definitions are only provided in numerator-layout notation:

∂Y

∂x
=


∂y11

∂x
∂y12

∂x · · · ∂y1n

∂x
∂y21

∂x
∂y22

∂x · · · ∂y2n

∂x
...

...
. . .

...
∂ym1

∂x
∂ym2

∂x · · · ∂ymn

∂x



dX =


dx11 dx11 . . . dx1q

dx21 dx22 . . . dx2q

...
...

. . .
...

dxp1 dxp2 . . . dxpq
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2.1.2 Denominator-layout notation

∂y

∂x
=


∂y
∂x1
∂y
∂x2

...
∂y
∂xn


∂y

∂x
=
[
∂y1

∂x
∂y2

∂x . . . ∂ym

∂x

]

∂y

∂x
=


∂y1

∂x1

∂y2

∂x1
· · · ∂ym

∂x1
∂y1

∂x2

∂y2

∂x2
· · · ∂ym

∂x2

...
...

. . .
...

∂y1

∂xn

∂y2

∂xn
· · · ∂ym

∂xn



∂y

∂X
=


∂y

∂x11

∂y
∂x12

· · · ∂y
∂x1q

∂y
∂x21

∂y
∂x22

· · · ∂y
∂x2q

...
...

. . .
...

∂y
∂xp1

∂y
∂xp2

· · · ∂y
∂xpq


2.2 Useful formulas

1.

d

dx
(xTx) =


∂

∂x1
(xTx)

∂
∂x2

(xTx)
...

∂
∂xn

(xTx)

 =


2x1

2x2

...
2xn

 = 2x

[since, ∂
∂xi

(xTx) = ∂
∂xi

(x2
1 + x2

2 + . . .+ x2
n) = 2xi]

2.

d

dx
(aTx) =

d

dx
(a1x1 + a2x2 + . . .+ anxn) =


a1
a2
...
an

 = a

3.

d

dx
(xTa) = aT
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4.

d

dx
(Ax) = A

5. Assume, A is real and symmetric (AT = A)

d

dx
(xTAx) = 2

∑
i

∑
j

aij xi xj

∂

∂xi
(xTAx) = 2

∑
j

aij xj

= 2(Ax)i

∴
d

dx
= 2Ax

Example:

=⇒
[
x1 x2 x3

] a11 a12 a13
a21 a22 a23
a31 a32 a33

x1

x2

x3

 =

=⇒ a11 x2
1 + a22 x2

2 + a33 x2
3 + 2 a12 x1x2 + 2 a13 x1x3 + 2 a23 x2x3

=⇒ ∂

∂x1
(xTAx) = 2(a11 x1 + a12 x2 + a13 x3)

=⇒ ∂

∂x2
(xTAx) = 2(a21 x1 + a22 x2 + a23 x3)

=⇒ ∂

∂x3
(xTAx) = 2(a31 x1 + a32 x2 + a33 x3)
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3 Orthogonal Projection and Least Square Approximation

3.1 The Linear Algebra Way

1. Projection on a vector: The orthogonal decomposition of x on v means is decomposing x in
the following manner:

x = p+ z such that p = tv (t is scalar) and z ⊥ v.
p = projvx is called the orthogonal projection of x on v.

Show,

p =
xT v

vT v
v

and if v is an unit vector, then p = (xT v)v.
Note that here we can consider xT v as the coordinate of p in the space spanned by p.
Solution:

Let p = tv, here t is a scalar
z = x− p = x− tv
z is orthogonal to v if and only if

0 = (x− tv).v

⇒ 0 = x.v − (tv.v)

⇒ 0 = x.v − t(v.v)

⇒ 0 = xT v − tvT v

∴ t =
xT v

vT v
Since p = tv, we can write

p =
xT v

vT v
v

If v is an unit vector, then v.v = 1
∴ p = (xT v)v
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2. Projection on a subspace: Projection of x on a subspace W , such that x /∈ W , is given by

p = projWx = x̂ = V V Tx

here, W is spanned by orthonormal basis set B = {v1,v2, . . . ,vk} and
V = [v1v2 . . .vk], the matrix with the vi’s as columns.

V V T is called the projection matrix.

Solution:

x = p+ z s.t., p ∈ W or, x̂ ∈ W
Then, x̂ = p = α1v1 + ..+ αkvk = V α
and z = x− V α

We also have, z ⊥ W which means z ⊥ w, for any w ∈ W . Then z ⊥ vi because z is in W⊥

and subspace W is spanned by the orthonormal basis vectors vi.

So,
z ⊥ v1 ⇒ vT

1 z = 0 ⇒ vT
1 (x− V α) = 0

...

z ⊥ vk ⇒ vT
k z = 0 ⇒ vT

k (x− V α) = 0

Combining these equations, we can write
vT
1

vT
2
...

vT
k

 (x− V α) = 0

⇒ V T (x− V α) = 0

⇒ V Tx− V TV α = 0

⇒ V Tx−α = 0
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Since V TV = I ( Property of orthonormal matrix and here V is orthonormal matrix)

∴ α = V Tx

We have x̂ = V α

∴ x̂ = V V Tx

Note: Projection of x in the direction of vi, for i = 1, 2, . . . , k:

projvi
x = (xT vi)vi

Therefore projection to the subspace can be expressed as,

x̂ = projWx = V V Tx

= (xT v1)v1 + (xT v2)v2 + · · ·+ (xT vk)vk

= projv1x+ projv2x+ · · ·+ projvk
x

3. Orthogonal Projection Gives the Best Approximation: Using Pythagorean Theorem
show that, ∥x− p∥2 < ∥x− q∥2, where p = projWx, q is in W, and p ̸= q. That is, p is the
best approximation of x in the subspace W.

Solution:
Both p and q are in W and distinct from each other. Then p− q is in W . z = x− p is

orthogonal to W . In particular, x− p is orthogonal to p− q. Therefore,

x− q = (x− p) + (p− q)
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Using Pythagorean Theorem,

∥x− q∥2 =∥x− p∥2 +∥p− q∥2

Now ∥p− q∥2 > 0 because p− q ̸= 0 which implies ∥x− p∥2 <∥x− q∥2

4. Change of Coordinates

projWx = V V Tx

=

 | |
v1 ... vk

| |



vT
1

vT
2
...

vT
k

x

=

 | |
v1 . . . vk

| |



xT v1

xT v2

...
xT vk



=

 | |
v1 . . . vk

| |



α1

α2

...
αk


∴
[
x̂
]
S
= V

[
x̂
]
B

Observe that

• V Tx =
[
x̂
]
B

gives the coordinates of the projection (using basis B) and

• then the coordinates of the projection are changed from the basis B to S (the standard
basis).

• If x is from a d-dimensional vector space,
[
x̂
]
S
is a d×1 vector and

[
x̂
]
B

is a k×1 vector.
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3.2 Orthogonal Projection: The Calculus Way

1. Projection on a vector Using Calculus find the vector closest (in least square sense) to x
in the direction of v. In other words, find the least square approximation of x in the space
spanned by v.

Solution:
A vector p in the direction of v is given by p = tv, where t is a scalar. Therefore, we need to
find t that minimizes

J(t) =∥x− tv∥2

= (x− tv)T (x− tv) = (xT − tvT )(x− tv)

= xTx− tvTx− txTv + t2(vTv)

∴ J(t) =∥x∥2 − 2txTv + t2∥v∥2

Differentiating the equation with respect to t, we get,

J ′(t) = −2xTv + 2t∥v∥2

Setting J ′(t) = 0 and solving for t we get,

−2xTv + 2t∥v∥2 = 0

∴ t =
xTv

∥v∥2

Therefore, projection of x on v defined as p can be written as,

p =
xTv

∥v∥2
v

2. Projection on a subspace We seek the closest approximation of vector x in the subspace
W which has dimension k. Assume, vi’s for i = 1, 2, ..., k form an orthonormal basis for W .
Find the αi’s for i = 1, 2, ..., k, s.t. the error J , given by

J =∥x− x̂∥2 =
∥∥x−

k∑
i=1

αivi

∥∥2
is minimized.

Solution:
Any vector in W can be written as

∑k
i=1 αivi. Thus, x will be represented by some vector

in W as
∑k

i=1 αivi. To minimize the error J we need to take partial derivatives.
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J(α1, ..., αk) =
∥∥x−

k∑
i=1

αivi

∥∥2
= (x−

k∑
i=1

αivi)
T (x−

k∑
i=1

αivi)

= (xT −
k∑

i=1

αiv
T
i )(x−

k∑
i=1

αivi)

= xTx− x

k∑
i=1

αiv
T
i − xT

k∑
i=1

αivi + (

k∑
i=1

αiv
T
i )(

k∑
i=1

αivi)

=
∥∥x∥∥2 − 2

k∑
i=1

αix
Tvi +

k∑
i=1

α2
i

[
∵
∥∥vi

∥∥2 = 1 and vi’s are orthogonal

]

Then we take partial derivative with respect to αi and set that to 0 for optimal value. We
get,

−2xTvi + 2αi = 0

∴ αi = xTvi

3.3 Ordinary Least Square Regression

Suppose we have n datapoints (x(1), y(1)), . . . , (x(n), y(n)), where x(i)’s are d-vectors [x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
d ]

(i.e., x contains the values of d features or (independent) variables) and y is a real number (called
the dependent variable).

We assume there is a function f(x) such that y = f(x). In linear regression, based on the data,

we want to find a linear (affine) function f̂ that approximates f(in the least square sense).
Let,

ŷ = f̂(x) = β0 + β1x1 + . . .+ βdxd

= β0x0 + β1x1 + . . .+ βdxd [let, x0 = 1]

That is, for each of the n datapoints x(i):

β0x
(1)
0 + β1x

(1)
1 + . . .+ βdx

(1)
d = ŷ(1)

β0x
(2)
0 + β1x

(2)
1 + . . .+ βdx

(2)
d = ŷ(2)

...

β0x
(n)
0 + β1x

(n)
1 + . . .+ βdx

(n)
d = ŷ(n)
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x
(1)
0 x

(1)
1 . . . x

(1)
d

x
(2)
0 x

(2)
1 . . . x

(2)
d

...
...

. . .
...

x
(n)
0 x

(n)
1 . . . x

(n)
d



β0

β1

...
βd

 =


ŷ(1)

ŷ(2)

...
ŷ(N)



1 x

(1)
1 . . . x

(1)
d

1 x
(2)
1 . . . x

(2)
d

...
...

. . .
...

1 x
(N)
1 . . . x

(N)
d



β0

β1

...
βd

 =


ŷ(1)

ŷ(2)

...
ŷ(N)


=⇒ Xβ = ŷ

That means, we need to find the β0, β1..., βd coefficients that satisfy the above equations. We
can view this problem as finding the solution to the system of linear equations (Xβ = ŷ). However,
this is a overdetermined system (more equations (or rows) than variables (or columns)). Therefore,
we can only find the best β that approximately solves the system of linear equation.

Or, we can also view this as an optimization problem and find the β that minimizes the Mean
Squared Error (MSE):

1

n

N∑
i=1

(y(i) − ŷ(i)) =
1

N
||y − ŷ||2 =

1

N
||y −Xβ||2

Note: Usually in linear regression the features or independent variables are transformed to
create a new set of variables. This can be done through basis functions ϕj(x) that transforms the
data and creates a datapoint in the transformed feature space, zj = ϕj(x), j = 1, . . . , p. And
then we do linear regression using the transformed datapoints, Note that The basis functions can
be non-linear.

f̂(x) = β0 + β1z1 + . . .+ βpzp

= β0ϕ0(x) + β1ϕ1(x) + . . .+ βpϕp(x) [ϕ0(x) = 1]

Again, the MSE can be written as

1

n
||y −Xβ||2

where,

X =


ϕ0(x

(1)) ϕ1(x
(1)) . . . ϕp(x

(1))
ϕ0(x

(2)) ϕ1(x
(2)) . . . ϕp(x

(2))
...

...
. . .

...
ϕ0(x

(N)) ϕ1(x
(N)) . . . ϕp(x

(N))

 , β =


β0

β1

...
βN
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3.3.1 The Linear Algebra Way

Suppose we have a system of linear equations Aβ = y, where X is a n× d matrix.

Here, A =

 | |
a1 ... ad

| |

, β =


β1

β2

...
βd

, and Aβ = β1a1 + β2a2 + · · ·+ βdad.

If the system of linear equations does not have a solution, y ̸= β1a1 + β2a2 + · · · + βkad, i.e.,
y /∈ Col(A) = span{a1,a2, . . .ad}.
Then least square solution is β̂, such that

∥∥∥y −Aβ̂
∥∥∥2 is minimum.

We observe, what we are asking for are the coordinates of ŷ = projCol(A)y. Now, we may not
have an orthonormal basis of Col(A), that is columns of A might not be orthonormal. Rather we
have a basis B′ = {a1,a2, ...,ad} of the Col(A), assuming the columns of A are linearly indepen-
dent.

Show,
β̂ = (ATA)−1ATy

ŷ = projCol(A)y = Aβ̂ = A(ATA)−1ATy

Note, A(ATA)−1AT is called the Projection matrix and A† = (ATA)−1AT is called the pseudo-
inverse matrix.

Solution:

When a solution is demanded and none exists, in this scenario what we can do is to find a β
that makes Aβ as close as possible to y.

Here, A is n× d and y is in Rn.
Let ŷ =projCol(A)y
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Because ŷ is in the column space of A, the equation Aβ = ŷ is consistent and there is a β̂ in
Rk such that,

Aβ̂ = ŷ

The projection ŷ has the property that y− ŷ is orthogonal to Col(A), so (y−Aβ̂) is orthogonal
to each column of A.

If aj is any column of A, then aj .(y−Aβ̂) = 0 or aT
j (y−Aβ̂) = 0.

Since each aT
j is a row of AT ,

AT (y −Aβ̂) = 0

⇒ ATy −ATAβ̂ = 0

⇒ ATAβ̂ = ATy[These are called the Normal Equations]

∴ β̂ = (ATA)−1ATy

Finally we have, ŷ = projCol(A)y = Aβ̂ = A(ATA)−1ATy

• Using QR decomposition:

Alternatively, ŷ = QQTy where A= QR is the QR decomposition of A
Here, the columns ofQ form an orthonormal basis for Col(A) andR is an upper triangular invertible
matrix.
Aβ̂ = ŷ
⇒ QRβ̂ = QQTy
∴ β̂ = R−1QTy
Note, the pseudo-inverse of A, A† = R−1QT

3.3.2 The Calculus Way

Using the derivative rules, as outlined in Section 2.2, we can use calculus to find the β:

||y −Aβ||2 = (y −Aβ)T (y −Aβ)

= ||y||2 − 2yTAβ + βTATAβ

∂

∂β
||y −Aβ||2 = 0− 2ATy + 2ATAβ

∴
∂

∂β
||y −Aβ||2 = 0

=⇒ ATAβ = ATy

∴ β̂ = (ATA)−1ATy
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4 Principal Component Analysis

In the previous section, we were given a k dimensional subspace W or more specifically a basis
of the subspace and we were asked to find a vector x̂ in that subspace that is the least square
approximation (minimum reconstruction error) of a vector x /∈ W . We found that the x̂ = projWx,
i.e., the orthogonal projection of x on W .

In Principal Component Analysis (PCA) our objective is to find ”best” the subspace or the
orthonormal basis of the subspace for a given set of datapoints. PCA can be interpreted in the
following two equivalent ways:
1. Least square reconstruction error minimization
2. Variance maximization

4.1 PCA as Least Square Reconstruction Error Minimization

In the least square reconstruction error minimization formulation, our goal is to find V , where
columns of V are orthonormal and they form the orthonormal basis of W such that, the reconstruc-
tion error/ projection error

J =

n∑
j=1

∥∥xj − projWxj

∥∥2
is minimum. Here, the data points x1,x2, ..,xn are d-vectors (i.e., there are d features).

Solution to PCA problem: using summation notation
Any vector in W can be written as

∑k
i=1 αivi. Thus x1 will be represented by some vector in W

as
∑k

i=1 α1ivi.
To minimize the error J, over all n datapoints, we need to take partial derivatives and enforce
constraint that

{
v1, .., vk

}
are orthogonal.

J(v1, .., vk, α11, ..., αnk) =

n∑
j=1

∥∥xj −
k∑

i=1

αjivi

∥∥2
=

n∑
j=1

(xj −
k∑

i=1

αjivi)
T (xj −

k∑
i=1

αjivi)

=

n∑
j=1

(xT
j −

k∑
i=1

αjiv
T
i )(xj −

k∑
i=1

αjivi)

=

n∑
j=1

{
xT
j xj − xj

k∑
i=1

αjivi
T − xT

j

k∑
i=1

αjivi +

k∑
i=1

αjiv
T
i

k∑
i=1

αjivi

}

=

n∑
j=1

∥∥xj

∥∥2 − 2

n∑
j=1

k∑
i=1

αjix
T
j vi +

n∑
j=1

k∑
i=1

α2
ji

[
∵ vi’s are orthonormal

]
Then we take partial derivative with respect to some αml and set that to 0 for optimal value. We
get,

−2xT
mvl + 2αml = 0
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∴ αml = xT
mvl

(But we already know this from the idea of orthogonal projection from the previous section)
Now we have to plug the optimal value for αml = xT

mvl back into J .

J(v1, ..., vk) =

n∑
j=1

∥∥xj

∥∥2 − 2

n∑
j=1

k∑
i=1

(xT
j vi)x

T
j vi +

n∑
j=1

k∑
i=1

(xT
j vi)

2

=

n∑
j=1

∥∥xj

∥∥2 − n∑
j=1

k∑
i=1

(xT
j vi)

2

= const−
k∑

i=1

vT
i

(
n∑

j=1

xjx
T
j

)
vi

= const−
k∑

i=1

vT
i Svi

In matrix notation:
Assume X is a d×n data matrix, where each d-dimensional datapoint xi stored as the columns

of X. Then,∑
j

∥∥xj − projWxj

∥∥2 =
∥∥∥X − V V TX

∥∥∥2
fro

= tr((X − V V TX)T (X − V V TX)) ∵∥A∥2fro = tr(ATA)

= tr(XTX −XTV V TX −XTV V TX +XTV V TV V TX)

= tr(XTX − 2XTV V TX +XTV V TX)[∵ V TV = I]

= tr(XTX)− tr(XTV V TX)

= const− tr(XTV V TX)

Using the cyclic property of trace: tr(ABC) = tr(CAB) = tr(BCA) we get,

tr(XTV V TX) = tr(XXTV V T )

= tr(V TXXTV )

= tr(V TSV )

=
∑
i

(vTi Svi)

∴
∑
j

∥∥xj − projWxj

∥∥2 = const−
∑
i

(vTi Svi)

Note: Minimizing the reconstruction error is equivalent to maximizing the sum of the quadratic
forms vT

i Svi where S is the Scatter matrix, if the data points are mean centered (more on this
below). We will discuss about maximizing a quadratic form Q(v) = vTSv in the next section.
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4.2 Covariance and Scatter Matrix

The matrix S has a nice interpretation. Observe, each row i of the matrix X is a feature vector
fi. If we subtract the row means (feature means, µi’s) of X from each element of the rows then
we have made sure that each fi has zero mean. This is sometimes called centering the data. We
will call mean subtracted data matrix, the demeaned data matrix X̃.

X̃ = X −


−µ1−
−µ2−

...
−µd−

 =


−f1−
−f2−

...
−fd−

−


−µ1−
−µ2−

...
−µd−



=


f11 − avg(f1) f12 − avg(f1) . . . f1n − avg(f1)
f21 − avg(f2) f22 − avg(f2) . . . f2n − avg(f2)

...
...

. . .
...

fd1 − avg(fd) fd2 − avg(fd) . . . fdn − avg(fd)



X̃T =


f11 − avg(f1) f21 − avg(f2) . . . fd1 − avg(fd)
f12 − avg(f1) f22 − avg(f2) . . . fd2 − avg(fd)

...
...

. . .
...

f1n − avg(f1) f2n − avg(f2) . . . fdn − avg(fd)



We can observe the ij-th element of X̃X̃T is,

n∑
k=1

(fik − avg(fi))(fjk − avg(fj)) = (n− 1)sij

where, sij = cov(fi, fj) is the sample covariance between the features fi and fj .
Also observe, when i = j, sii = cov(fi, fi) = var(fi).

∴ X̃X̃T = (n− 1)Σ̂

= (n− 1)


s211 s12 . . . s1d
s21 s222 . . . s2d
...

. . .

sd1 sd2 . . . s2dd


= S

Here, Σ̂ is the Sample Covariance matrix, and S is the Scatter matrix.
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Observation 1: What happens when data is stored as rows in X?

X =


−x1−
−x2−

...
−xn−


︸ ︷︷ ︸

n×d

=

 | | |
f1 f2 . . . fd

| | |



∴ X̃T X̃ = (n− 1)Σ̂
We can easily show that we end up with the same maximization problem.

Observation 2: S is a real symmetric matrix.

4.3 PCA as Variance Maximization

We can think of the PCA as projecting x into the subspace of dimension k so that we can capture
maximum variance. That is, instead of thinking about reconstruction error, we can simply restrict
attention to directions where scatter or variability of the data is the greatest.

Suppose we want to embed two dimensional points in a one dimensional space, a line e. We can
see from the figure that the projection points are very spread out along the blue direction and they
are very bunched up along the green direction. So the variance along the blue dimension is higher
than the variance of the green one.

So why is good to have a high variance along the projection?
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If we look at the two red points, they are pretty far away from each other in the 2-dimensional
space. If we happen to project them to the green dimension, they will end up being on top of
one another. So this dimension does not preserve distance of the original space. If points are far
away in original space, we want them to remain that way in the lower dimensional space. But if we
project them to blue line, they will stay apart from each other. (Though there will be some points
which will end up being close when we project them. If we can choose the direction with maximum
variability of the datapoints, we can reduce the number of such points).

How to find the direction of maximum variance?

1

N

∑
j

(vTxj)
2
= vTXXT v = vTSv

From this, we can observe that the variance will be maximum when we project in the direction v
in which the quadratic form is maximized.
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5 Maximization of Quadratic Form

There are two ways to maximize (or minimize) a quadratic form Q(vi) = vT
i Svi subject to the

constraint ∥vi∥2 = 1:
1. Calculus way: using the method of Lagrange Multipliers
2. Linear Algebra way: using Diagonalization method

5.1 Calculus way: Method of Lagrange Multipliers

Here, we will consider the sum of quadratic forms that we want to maximize in PCA. We will en-
force constraints vT

i vi = 1 for all i and incorporate the constraints with undetermined λ1, . . . , λk.

Now we will need to maximize a new function Ĵ .

Ĵ(v1,v2, . . . ,vk) =

k∑
i=1

vT
i Svi −

k∑
j=1

λj(v
T
j vj − 1)

Computing the partial derivative with respect to vm,

∂Ĵ(v1, . . . ,vk)

∂vm
= 2Svm − 2λmvm = 0

Svm = λmvm

Therefore, λm’s and vm’s must be the eigenvalues and the corresponding eigenvectors of the Scatter
matrix S.

5.2 Linear algebra way

In this section we deal with maximizing a single quadratic form. The maximization of the sum of
quadratic from in PCA will follow from the solution to this problem. The problem of maximizing
a quadratic from sometimes appears in engineering literature as maximizing the Rayleigh quotient.

Rayleigh Quotient problem: For a fixed symmetric matrix A, the normalized quadratic form

max
x ̸=0∈Rn

Q(x)

∥x∥2
=

xTAx

xTx

is called Rayleigh Quotient.

Since the quotient is scaling invariant, we can write:

max
x∈Rn: ∥x∥=1 xTAx

Explanation: Let’s consider x = cx. Then we get

max
cx ̸=0∈Rn

(cx)TA(cx)

(cx)T (cx)
=

c2xTAx

c2xTx
=

xTAx

xTx

It implies that we will get the same maximum value even when we choose a scalar multiple of x.
That is why we will choose to use unit vector, i.e., ∥x∥ = 1.
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At this point we can see that our problem: max vTSv subject to ∥v∥2 = 1 is exactly the Rayleigh
Quotient problem with the real symmetric matrix S.
Observe if S were a diagonal matrix, then solving this maximization problem is easy. For instance,
consider the problem of finding the maximum value of

Q(x) = 9x2
1 + 4x2

2 + 3x2
3

subject to the constraint ∥x∥ = 1.

In matrix form: Q =
[
x1 x2 x3

] 9 0 0
0 4 0
0 0 3

x1

x1

x3


Solution: Since x2

2 and x2
3 are nonnegative, note that 4x2

2 ≤ 9x2
2 and 3x2

3 ≤ 9x2
3

and hence

Q(x) = 9x2
1 + 4x2

2 + 3x2
3

≤ 9x2
1 + 9x2

2 + 9x2
3

= 9(x2
1 + x2

2 + x2
3)

= 9

whenever x2
1 + x2

2 + x2
3 = 1

So the maximum value of Q(x) can not exceed 9 when x is a unit vector.
∴ Q(x) = 9 when x = (1, 0, 0)
Thus 9 is the maximum value of Q(x) for xTx = 1.

Therefore, one way to solve the general quadratic form optimization problem will be to orthogonally
diagonalize S by changing of variable. In the following, we describe how to orthogonally diagonalize
a matrix. We will show that for a real symmetric matrix such a diagonalization always exists.

5.2.1 Diagonalization, Similarity Transformation, and Eigendecomposition

Similar Matrices: If A and B are n× n matrices, then A is similar to B if there is an invertible
matrix P such that P−1AP = B or equivalently, A = PBP−1.

Note: if A and B are similar, then they have the same characteristic polynomial and
hence the same eigenvalues. They also have same number of independent eigenvectors. To
show the claim:

First, if λ is an eigenvalue of A, then Ax = λx and since A and B are similar, PBP−1 = A.
so,

PBP−1x = λx

B(P−1x) = λP−1x

which is the eigenvalue problem formulation for B. Therefore, we find, though the eigenvectors
P−1x ̸= x but the eigenvalue λ is the same for A and B.

Another way to see this,
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det(B − λI)

= det(P−1AP − λI)

= det(P−1AP − λP−1P )

= det(P−1(A− λI)P )

= det(P−1)det(A− λI)det(P )

= det(P )−1det(A− λI)det(P )

= det(A− λI)

So, the matrices have the same characteristic equation.

Diagonalizable matrix: An n× n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors. In fact, A = PDP−1, with D a diagonal matrix, if and only if the
columns of P are linearly independent eigenvectors of A. In this case, the diagonal entries of D are
eigenvalues of A that correspond, respectively, to the eigenvectors in P .

Diagonalization Theorem

A is diagonalizable iff A has n linearly independent eigenvectors. In this case, we may construct
P by stacking the n eigenvectors and D as a diagonal matrix with the corresponding eigenvalues.
Proof:

Consider the columns of P =
(
p1 p2 . . . pn

)
and D =


d1 0 . . . 0
0 d2 . . . 0
. . . . . . . . . . . .
0 0 . . . dn


Let’s assume that A = PDP−1 and we multiply by P on the right

AP = PD(
Ap1 Ap2 . . . Apn

)
=
(
d1p1 d2p2 . . . dnpn

)
This implies that

Ap1 = d1p1

Ap2 = d2p2

. . .

Apn = dnpn

But this is the definition of eigenvector, so all the columns pi in P must be eigenvectors of A and
di its corresponding eigenvalue. Since P is invertible, its columns must be linearly independent.

Note that,
An n× n matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

When is An×n not diagonalizable?
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While diagonalizing A, if we come across fewer than n total vectors in all of the eigenspace bases,
then the matrix is not diagonalizable. We can say, if the algebraic multiplicity of λ does not equal
to the geometric multiplicity, then A is not diagonalizable.

5.2.2 Eigenvalues and Eigenvectors of Real Symmetric Matrix:

Theorem: An n× n real symmetric matrix A has real eigenvalues.
Proof : The conjugate transpose of a matrix A is denoted by AH , then the Hermitian property
can be written as

A Hermitian ⇐⇒ A = AH

(xHAx)H = xHAx

∴ xHAx must be real.

Ax = λx

Multiplying by xH from left on both sides,

xHAx = λxHx = λ∥x∥2

λ =
xHAx

xHx
= real x ̸= 0

Theorem: If A is symmetric, then any two vectors from different eigenspaces are orthogonal.
Proof : Let v1 and v2 be eigenvectors that correspond to distinct eigenvalues, say λ1 and λ2. To
show that v1.v2 = 0, we have to compute

λ1v1.v2 = (λ1v1)
Tv2

= (Av1)
T
v2 [∵ v1 is an eigenvector]

= (v1
T
AT )v2

= v1
T (Av2) [∵ AT = A]

= v1
T (λ2v2) [∵ v2 is an eigenvector]

= λ2v1
Tv2

= λ2v1.v2

Hence (λ1 − λ2)v1.v2 = 0
But (λ1 − λ2) ̸= 0, so v1.v2 = 0

5.2.3 Orthogonal Eigendecomposition and its Geometric Interpretation:

Suppose A = PDP−1, where the columns of P are orthonormal eigenvectors u1, . . . , un of a real
symmetric matrix A and the corresponding eigenvalues λ1, . . . , λn are in the diagonal matrix D.
Then, since P−1 = P T ,
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A = PDPT

=
[
u1 . . . un

] 
λ1 0

. . .

0 λn



uT
1
...

uT
n



=
[
λ1u1 . . . λnun

] 
uT
1
...

uT
n


We can write

A = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n

This representation of A is called a spectral decomposition of A because it breaks up A into
pieces determined by the spectrum (eigenvalues) of A.
Each term is a n× n matrix of rank 1. For example, every column of λ1u1u

T
1 is a multiple of u1.

The matrix-vector product Ax is decomposed as

Ax =

n∑
j=1

λjuj(u
T
j x)

• Each matrix uju
T
j is a projection matrix in the sense that for each x in Rn, the vector uju

T
j x

is the orthogonal projection of x onto the subspace spanned by uj ,
i.e., uju

T
j x = uj(uj .x) = (uj .x)uj=projuj

x

• (uT
1 x, . . . , u

T
nx) are coordinates of x in the orthonormal basis {u1, . . . , un}

• (λ1u
T
1 x, . . . , λnu

T
nx) are coordinates of Ax in the orthonomral basis {u1, . . . , un}

Change of Variable in Quadratic Form and its Geometric View:
A quadratic form on Rn is a function Q defined on Rn whose value at a vector x in Rn can be
computed by an expression of the form Q(x) = xTAx, where A is an n× n symmetric matrix.

Let x = Py or equivalently, y = P−1x
where P is an invertible matrix and y is a new variable vector in Rn. Here y is the coordinate
vector of x relative to the orthonormal basis of Rn determined by the columns of P .
If the change of variable is made in a quadratic form xTAx, then

xTAx = (Py)TA(Py) = yT (PTAP )y

and the new matrix of the quadratic form is (PTAP ). Since A is symmetric, it is guaranteed that
there is an orthonormal matrix P such that (PTAP ) is a diagonal matrix D and we get yTDy
with no cross product term.

Geometric View
When A is not diagonal, then the graph of the equation xTAx = c is rotated out of standard
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position. Finding the principal axes (columns of P) amounts to finding a new coordinate system
with respect to which the graph is in standard position.

Figure 1: Ellipse in standard position

Figure 2: Ellipse not in standard position
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5.2.4 Finally the Solution to the PCA Problem:

We approach our maximization problem by orthogonally diagonalizing S as S = PDPT and making
the change of variables v = Py → y = PTv. We know

Q(v) = vTSv = yTDy

Additionally, ∥y∥2 =∥v∥2 because

∥y∥2 = yTy = (PTv)T (PTv) = vTv =∥v∥2

Since D is diagonal, we have
yTDy = λ1y

2
1 + λ2y

2
2 + · · ·+ λdy

2
d

Let’s look for the maximum of these values subject to∥y∥ = 1. If we consider the maximum eigen-
value λmax, then

yTDy = λ1y
2
1 + λ2y

2
2 + · · ·+ λdy

2
d

≤ λmaxy
2
1 + λmaxy

2
2 + · · ·+ λmaxy

2
d

= λmax(y
2
1 + y22 + · · ·+ y2d)

= λmax∥y∥2

= λmax

the value λmax is attained for ymax =
(
0 0 . . . 0 1 0 . . . 0

)
, where the 1 is at the location

corresponding to λmax. The corresponding v is

v = Py =
(
u1 u2 . . . umax−1 umax umax+1 . . . ud

)


0
0
. . .
0
1
0
. . .
0


∴ v = umax

Therefore we can conclude that desired v is umax which is the eigenvector associated to the largest
eigenvalue λmax.
Note that,
When we project on a subspace with orthonormal basis, the covariance of the projected data is zero.

Additional Notes:

1. Change of Basis and Similar Matrices: To get more insight on the connection between
similarity transformation and change of basis, let’s see the following,
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Suppose A is diagonalizable (A = PDP−1). If B is the basis of Rn formed by the columns
of P , then

Api ∈ Rn ∴ Api = Pci (for some ci)

=⇒ [Api]B = ci

∴ A [p1 . . .pn] = P [c1 . . . cn]

=⇒ AP = PC

=⇒ P−1AP = C

=⇒ A = PCP−1 (x)

A and C are similar matrices if there exists another matrix P such that A = PCP−1

A [x]S = PCP−1 [x]S
= PC [x]B (under A)

= P [Ax]B (under C)

= [Ax]S ()

C performs the same transformation, but in the coordinates defined by B. Now, if C is a
simpler matrix (e.g. diagonal), then the transformation is easy. So, find a coordinate system
(set of basis vectors), where the transformation T can be performed by a diagonal matrix.

Consider a linear transformation between two vectors spaces T : V → V . Let T (x) = t. Let
E be the basis of V and F be the basis of W

Let A be a matrix under T with respect to E, and B be a matrix under T with respect to
F . Let S be the change of basis matrix from F → E.
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[x]E = SF→E [x]F
[t]E = A [x]E

≡ [t]F = B [x]F

S−1 [t]E = S−1A [x]E

[t]F = S−1AS [x]F

=⇒ B = S−1AS

=⇒ A = SBS−1

2. Theorem: A real symmetric matrix is Positive Definite (PD) if (i)xTAx > 0 ∀x ̸= 0 and
(ii) all the eigenvalues of A satisfy λi > 0
x is eigenvector of A
Proof: In the first step we will show that each eigenvalue will be positive.
If xTAx > 0 :

xTλx = λ∥x∥2

xTAx > 0 =⇒ λ > 0

If λi > 0:
x is any vector and x ̸= 0
x = c1x1 + c2x2 + · · ·+ cnxn

where x1,x2, . . . ,xn are eigenvectors.

∴ xTAx = (c1x1
T + · · ·+ cnxn

T )A(c1x1 + · · ·+ cnxn)

=
∑
i

c2ix
T
i Axi

=
∑
i

c2iλix
T
i xi > 0 ∵ λi > 0, xT

i xi > 0 ∀x ̸= 0

3. The Transpose Trick PCA
Suppose the image database consists of N = 30 images. All images have the same dimension
m× n = 100× 100. The matrix P has 30 columns and mn rows.
We are interested in the eigenvalues and eigenvectors of the Scatter matrix PP T , but the
matrix PP T has the dimensions 10000 × 10000 and computation of eigenvalues and eigen-
vectors become unfeasible.
The dimensions of P TP are only 30× 30 and it is much more efficient to solve the eigenvalue
problem for the matrix P TP .
We will show the relation between the eigenvalues and eigenvectors of PP T and P TP .
If xi is an eigenvector of P TP and λi is its corresponding eigenvalue, then we can write the
following:

(P TP )xi = λixi
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Multiplying by P from the left,

P (P TP )xi = Pλxi

(PP T )Pxi = λ(Pxi)

shows us that if xi is an eigenvector of P TP , then Pxi is the eigenvector of PP T , with the
same eigenvalue.
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6 Linear Discriminant Analysis (LDA)

Fisher Linear Discriminant projects data to a line which preserves useful direction for data classifi-
cation. Its main idea is to find projection to a line such that samples from different classes are well
separated.

Suppose we have 2 classes and d−dimensional samples x1, . . . , xn where n1 samples come from
the first class (c1) and n2 samples come from the second class (c2).

Let the line direction be given by unit vector v. Thus the projection of sample xi onto a line in
direction v is given by vT xi. The scalar

y =
vTx

∥v∥
is the projection of x along v.

Measurement of separation between projections of different classes

Let µ̃1 and µ̃2 be the means of projections datapoints belonging to classes 1 and 2 respectively.

Let µ1 and µ2 be the means of classes 1 and 2.

µ̃1 = 1
n1

∑
vTxi = vT ( 1

n1

∑n1

xi∈C1 xi) = vTµ1

Similarly, µ̃2 = vTµ2

The larger |µ̃1 − µ̃2|, the better is the expected separation. The problem with |µ̃1 − µ̃2| is that
it does not consider the variance of the classes.

We have to normalize |µ̃1 − µ̃2| by scatter. y′is are the projected samples.

Scatter for projected samples of class 1 is: σ2
1 =

∑
(yi − µ̃1)

2

Scatter for projected samples of class 2 is: σ2
2 =

∑
(yi − µ̃2)

2

Thus Fisher Linear Discriminant is to project on line in the direction v which maximizes:

J(v) =
(µ̃1 − µ̃2)

2

σ2
1 + σ2

2

To maximize J we want (µ̃1−µ̃2)
2 to be large, i.e., the projected means to be far from each other.

And we also want σ2
1 , tha scatter in class 1, to be as small as possible, i.e. samples of class 1

cluster around the mean µ̃1. The same goes for class 2.

If we find v which makes J(v) large, we are guaranteed that the classes are well separated.
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Assuming the classes to be equiprobable, it can be shown that:

˜(µ1 − µ̃2)
2
= vT (µ1 − µ2)(µ1 − µ2)

Tv ∝ vTSbv

where Sb is the Between-class scatter matrix and tr(Sb) is the measure of the average (over all
classes) distance of the mean of each individual class from the respective mean.

We have,
σ2
i = E[(y − µi)

2] = E[vT (x− µi)(x− µi)
Tv] = vTΣiv

where for each i = 1, 2, samples y(x) from the respective class vi have been used.

Σi is the covariance matrix corresponding to the data of the class vi in the d dimensional space.
Using the definition of Sw we get,

σ2
1 + σ2

2 ∝ vTSwv

where Sw is the Within-class scatter matrix. tr(Sw) is a measure of the average, over all classes,
variance of the features.

Combining we end up that the optimal direction is obtained by maximizing Fisher’s criterion:

J(v) =
vTSbv

vTSwv

This is called the Generalized Rayleigh quotient.

Since Sw is PD, then Sw = RTR
Let y = Rv
So, v = R−1y = Cy

∴
vTSbv

vTSwv
=

yTCTSbCy

vTRTRv
=

yTCTSbCy

(Rv)TRv
=

yTCTSbCy

yTy

Now it has turned into the aforementioned Rayleigh Quotient.

The Generalized Rayleigh quotient is maximized if v is chosen such that Sbv = λSwv. This
is the generalized symmetric eigenvalue problem. Since the extreme values λ of the Generalized
Rayleigh quotient satisfy

Sbv = λSwv

⇒ Sbv = λRTRv

⇒ SbCy = λRTy

⇒ RT−1

Sbcy = λy

∴ CTSbCy = λy

The top eigenvector y1 of CTSbCy :
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max
yTCTSbCy

yTy
= λ1

when
CTSbCy1 = λ1y1

Then
Sbv1 = λSwv1 for v1 = R−1y1 = S

− 1
2

w y1

The eigenvalues of Sbv = λSwv are real because CTSbC is a a real symmetric matrix.

The orthogonality condition of two eigenvectors being orthogonal (in the case of two distinct
eigenvalues) for a symmetric matrix extends to Sbv1 = λSwv1 with two symmetric matrices. For
this we have to assume Sw is positive definite and we have to change from vT

1 v2 = 0 to ”M-
orthogonality” of v1 and v2.

Two vectors are M-orthogonal if vT
1 Swv2 = vT

1 RTRv2 = yT
1 y2 = 0

when Sbv1 = λ1Swv1, Sbv2 = λ2Swv2 and and λ1 ̸= λ2
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7 Singular Value Decomposition

A rectangular m × n matrix A can not be decomposed in the previous manner. Singular Value
Decomposition fills this gap. Now we need two sets of singular vectors the u’s and the v’s. The
connection between u’s and v’s is not Ax = λx, but rather AV = UΣ
or, A = UΣV T The matrices on the R.H.S are, respectively, (orthogonal), (diagonal) and (orthog-
onal).

Am×n

v1 v2 . . . vn


︸ ︷︷ ︸

n×n

=

u1 u2 . . . um


︸ ︷︷ ︸

m×m



σ1 0 0 . . . 0 0 0
0 σ2 0 . . . 0 0 0
0 0 σ3 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . σr 0 0
...

0 0 0 . . . 0 0 0


︸ ︷︷ ︸

m×n

(1)

=⇒

Av1 Av2 . . . Avn


︸ ︷︷ ︸

m×n

=

u1 u2 . . . um


︸ ︷︷ ︸

m×m



σ1 0 0 . . . 0 0 0
0 σ2 0 . . . 0 0 0
0 0 σ3 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . σr 0 0
...

0 0 0 . . . 0 0 0


︸ ︷︷ ︸

m×n

(2)

Here,
U is m×m orthogonal matrix, u1, . . . , um are called m left singular vectors in Rm.
V is n× n orthogonal matrix. v1, . . . , vn are called n right singular vectors in Rn

Σm×n has positive entries σ1, . . . , σr which are in descending order σ1 ≥ σ2 ≥ · · · > 0. They
are called the singular values of A. They fill the first r places on the main diagonal of Σ - when A
has rank r. The rest of Σ is zero. We can rewrite (2) as:
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Av1 = σ1u1

Av2 = σ2u2

...

Avr = σrur

...

Avr+k = 0

Observations:

1. You will see later on why the rank r of matrix A and subsequently the ranks of ATA and
AAT are important. Essentially, we only need r u and v vectors and that is enough for the
decomposition of matrix A, which will be achieved by using ATA and AAT .

2. It is also interesting to note that ATA and AAT are square matrices. So, we will prove later
on that these square matrices have exactly r non-zero eigenvalues (with repetitions) and n−r
zero eigenvalues. These r non-zero eigenvalues will yield the r eigenvectors of V and the rest
of the n− r eigenvectors will come from the eigenspace of the n− r zero eigenvalues.

3. The ranks are therefore important because we need to be certain that the matrix A will be
decomposed correctly into U ,Σ and V

7.1 Finding the singular vectors

Our goal is to find two sets of singular vectors (which are orthonormal)- the u′s and v′s. We
begin with finding V .

One way to find V is to form the symmetric matrix ATA.
ATA = (V ΣTUT )(UΣV T ) = V ΣTΣV T

The right side has the special form PDP T .
Eigenvalues are in D = ΣTΣ

So now we know how V connects to the symmetric matrix ATA. V contains orthonormal
eigenvectors of ATA.

Before we prove Observation (2) above, we will first prove that ifA has rank r = dim(colspace(A)) =
dim(rowspace(A)), then ATA and AAT both will have rank = r.

Proof : The set of vectors which satisfy ATAx = 0 is called the nullspace of the matrix ATA.
So, x ∈ N(ATA)

ATAx = 0
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xTATAx = 0

(Ax)T (Ax) = 0

∴ Ax = 0 [∵ xTx = 0 ⇔ x = 0]

∴ x ∈ N(A)

∴ N(ATA) ⊆ N(A) Again, x ∈ N(A)
Ax = 0
ATAx = 0
∴ x ∈ N(ATA)
∴ N(A) ⊆ N(ATA)
So it is obvious that N(ATA) = N(A) ⇒ dim(N(ATA)) = dim(N(A))
According to the Rank-Nullity Theorem
dim(colspace(A)) + dim(N(A)) = n = dim(colspace(ATA)) + dim(N(ATA))
It gives, r = dim(A) = dim(ATA)
We can also get, dim(N(A)) = dim(N(ATA)) = n− r
Again,

AAT y = 0

yTAAT y = 0

(AT y)T (AT y) = 0

∴ AT y = 0 [∵ xTx = 0 ⇔ x = 0]

The left nullspace is the space of all vectors y such that AT y = 0 or equivalently yTA = 0.
It is obvious that N(AAT ) = N(AT ) ⇒ dim(N(AAT )) = dim(N(AT )
According to the Rank-Nullity Theorem
dim(colspace(AT )) + dim(N(AT )) = m = dim(colspace(AAT )) + dim(N(AAT ))
Since dim(A) = dim(AT ), it gives, r = dim(A) = dim(AAT )
We can also get, dim(N(AT )) = dim(N(AAT )) = m− r
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Now we will prove Observation 2.
Lemma: The rank of any square matrix equals the number of nonzero eigen-values
(with repetitions), so the square matrix ATAn×n of rank r will have r numbers of
eigenvalues and n− r number of zero eigenvalues. We already have ATA = V ΣTΣV T ,
So ATA and S(= ΣTΣ) are similar matrices. We have to show that they have the same rank r.

Proof : Let Y = ATA
We have Y = V SV T

=⇒ V −1Y V = S =⇒ Y V = V S

Let Su = 0, when u ∈ N(S)
V Su = 0, ∴ u ∈ N(V S)
∴ N(S) ⊆ N(V S)

When V is invertible
V Sx = 0, if x ∈ N(V S)
Sx = V −10 = 0, ∴ x ∈ N(S)
∴ N(V S) ⊆ N(S)

∴ N(V S) = N(S)
From Rank-Nullity Theorem
rank (V S)=rank (S) when V is invertible
Similarly, rank (Y V )=rank (Y ) when V is invertible
∴ rank (Y ) = rank (S)

If ATA is diagonalizable and ATA = V SV T then ATA and S are similar and of course S con-
tains the eigenvalues of ATA. And since the ranks are same and equal to r, then S must contain
r nonzero rows and n − r rows of zeros which implies ATA has r nonzero rows and n − r rows of
zeros.
So the eigenvalues of ATA are all nonnegative. We may assume that the eigenvalues are rearranged
so that λ1 ≥ λ2 ≥ λn ≥ 0

The singular values of A are the square roots of the eigenvalues ofATA, denoted by σ1, . . . , σr.
ATA = (UΣV T )T (UΣV T ) = V ΣTUTUΣV T = Vr diag(σ2

1 , . . . , σ
2
r) V

T
r

AAT = (UΣV T )(UΣV T )T = UΣV TV ΣTUT = Ur diag(σ2
1 , . . . , σ

2
r) U

T
r

That is, σi =
√
λi for 1 ≤ i ≤ r

Observation:

1. The singular values of A are the lengths of the vectors Av1, . . . , Avr.
It can be seen in the following way: Let λ1, . . . , λr be the associated eigenvalues of ATAn×n.
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Then for 1 ≤ i ≤ r,

∥Avi∥2 = (Avi)
TAvi

= vTi A
TAvi

= vTi (λivi) [∵ vi is an eigen vector of ATA]

= λi [∵ vi is a unit vector]

2. The eigenvalues found from ATA and AAT are incidentally the same. The eigenvectors are
different.

So, we have found the vectors in V . Earlier, we saw that SVD requires Avk = σkuk. It connects
each right singular vector vk to a left singular vector uk, for k = 1, . . . , r. The u vectors obtained
from this will be valid if and only if:

1. They are eigenvectors of AAT

2. They are orthogonal to each other

So the unit eigenvector is uk = Avk

σk
for k = 1, . . . , r

Check that these u’s are eigenvectors of AAT :

AATuk = AAT
(

Avk

σk

)
= A

(
ATAvk

σk

)
= A

σ2
kvk
σk

Using uk = Avk
σk

=⇒ σk = Avk

uk
we get,

AATuk = σ2
kuk

The v’s were chosen to be orthonormal. Now we will check that u’s are also orthonor-
mal:

uT
j uk =

(
Avj
σj

)T (
Avk
σk

)
=

vTj (A
TAvk)

σjσk
=

σk

σj
vTj vk

∴ uT
j uk =

σk

σj
vTj vk =

{
1 if j = k

0 if j ̸= k

Finally we have to choose the last n− r vectors vr+1 to vn and the last m− r vectors ur+1 to um,
so that they form the orthogonal bases for Rn and Rm respectively.

Observations

1. These v’s and u’s are in the nullspaces of A and AT . We can choose any orthonormal
bases for those nullspaces.
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2. It can therefore be noted that obtaining the eigenvectors from the eigenspace of
the zero eigenvalues is equivalent to obtaining the vectors from the nullspace of
A.

3. The last n− r vectors of V and the last m− r vectors of U will automatically be orthogonal
to the first v′s in the row space of A and the first u′s in the column space of AT respectively
because the whole spaces are orthogonal: N(A) ⊥ C(AT ) and N(AT ) ⊥ C(A)

We will prove that u1, . . . , ur provide an orthogonal basis for Col A.
Proof : We saw earlier uT

i uj = 0 for i ̸= j, so (Avi)
T (Avj) = 0

Thus {Av1, . . . , Avn} is an orthogonal set. Since there are r nonzero singular values, Avi ̸= 0 if and
only if 1 ≤ i ≤ r, so Av1, . . . , Avr are linearly independent vectors and they are in Col A. Finally
for any y in Col A say y = Ax we can write x = c1v1 + · · ·+ cnvn
and y = Ax = c1Av1 + · · ·+ crAvr + cr+1Avr+1 · · ·+ cnAvn
∴ y = c1Av1 + · · ·+ crAvr + 0 + · · ·+ 0
Thus y is in Span {Av1, . . . , Avr} which shows that {u1, . . . , ur} is an orthogonal basis for Col A
and rank = r. [Proved]

As we know, (Col A)⊥=Nul AT . Hence ur+1, . . . , um is an orthonormal basis for Nul AT .
Since ∥Avi∥ = σi for 1 ≤ i ≤ n, and σi is 0 if and only if i > r, the vectors vr+1, . . . , vn span a
subspace of Nul A of dimensions n− r.
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By the Rank theorem, dim Nul A = n−rank A. It follows that vr+1, . . . , vn is an orthonormal basis
for Nul A.
The orthogonal complement of Nul AT is Col A. Interchanging A and AT , note that (Nul A)⊥=Col
AT= Row A. Hence v1, . . . , vr is an orthonormal basis for Row A.

(Additional) Observation 1. Eigenvectors of AAT must go into the columns of U

AAT = (UΣV T )(V ΣTUT ) = UΣΣTUT

As we already saw earlier, U contains the orthogonal eigenvectors of AAT . The m by m diagonal
matrix is in the middle ΣΣT with the eigenvalues σ2

1 , . . . , σ
2
r on the diagonal.

Observation 2. For positive definite matrices, Σ is D and UΣV T is identical to PDPT . For
other symmetric matrices, any negative eigenvalues in D become positive in Σ.
For complex matrices, Σ remains real but U and V become unitary (the complex version of orthog-
onal). We take complex conjugates in UHU = I and V HV = I and A = UΣV H

7.2 Best Matrix approximation

SVD separates the matrix into rank one pieces. A special property of the SVD is that those
pieces come in order of importance. The first piece σ1u1v

T
1 is the closest rank-one matrix to

A. A rank-k approximation is obtained by keeping the leading k singular values and vectors and
discarding the rest.
A truncated SVD basis (and the resulting approximation matrix Ak) will be denoted by Ak =
ŨΣ̃Ṽ T

Since Σ is diagonal, the rank-k SVD approximation is given by the sum of k distinct rank-1 matrices:
Ak =

∑k
j=1 σjujv

T
j = σ1u1v

T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

For a given k, there is no better approximation for A, in the ℓ2 sense, than the truncated SVD
approximation.
Eckart-Young Theorem: If B has rank k, then ∥A−B∥F ≥∥A−Ak∥F
Proof: Ak = U diag (σ1, σ2, . . . , σk, 0, . . . , 0)V

T , rank(Ak) = k

Ak =

k∑
i=1

σiuiv
⊤
i

∥A−Ak∥2 =

∥∥∥∥∥∥
n∑

i=k+1

σiuiv
⊤
i

∥∥∥∥∥∥
2

= σk+1

The whole proof of ∥A−B∥ ≥ σk+1 depend on a good choice of the vector x in computing the
norm ∥A−B∥ :

We will choose x ̸= 0 so that Bx = 0 and x =
∑k+1

1 civi
First, the nullspace B has dimension ≥ n− k, because B has rank ≤ k.

Second, the combinations of v1 to vk+1 produce a subspace of dimension k + 1. Those two
subspaces must intersect.
When dimensions add to (n − k) + (k + 1) = n + 1, the subspaces must share a line (at least).
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Choose a nonzero vector x on this line. Use that x to estimate the norm A − B. As Bx = 0 and
Avi = σiui:∥∥(A−B)x

∥∥2 =∥Ax∥2 =
∥∥∥∑ σiui

vi
civi

∥∥∥2 =∥ciσiui∥2 =
∑k+1

1 c2iσ
2
i

That sum is at least as large as (
∑

c2i )σ
2
k+1,which is exactly ∥x∥2 σ2

k+1.

So
∥∥(A−B)x

∥∥ ≥ σk+1∥x∥
∥A−B∥ ≥ σk+1 =∥A−Ak∥

We still have V T
k Vk = Ik and UT

k Uk = Ik from orthogonal unit vectors v′s and u’s.
But when Vk and Uk are not square, we can no longer have two-sided inverses:VkV

T
k = (n× k)(k×

n) ̸= Ik and UkU
T
k = (m× k)(k ×m) ̸= Ik
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